S.I.G.-DR.-ING. STEFFEN GmbH

Am Campus 1-11, Haus 4 18182 Bentwisch www.sig-mv.de Telefon: 0381 / 877 438 -60 Telefax: 0381 / 877 438 -89 E-Mail: info@sig-mv.de

BHB Krakow OHG z. Hd. Stephan Schmidt Am Altdorfer See 2 D-18292 Krakow am See Bentwisch, 2021-12-09 S. Tscherpel

Datei: 3902_OU-Erg1_Rev0-0_20211209.docx

B-Plan Nr. 41 "Am Mühlenbach" Krakow am See

hier: Ergebnisse der eingrenzenden Altlastenuntersuchungen, abschließende Gefährdungsbeurteilung

- Projekt-Nr. 13.3902 -

Sehr geehrter Herr Schmidt,

anliegend übersenden wir Ihnen die Ergebnisse der eingrenzenden Altlastenuntersuchungen zur abschließenden Gefährdungsbeurteilung am o.g. Standort.

Anlass, Auftrag

Die Stadt Krakow am See stellt in Zusammenarbeit mit dem privaten Grundstückseigentümer den B-Plan Nr. 41 "Am Mühlenbach" auf dem Gelände der ehemaligen Mechanischen Werkstatt in Krakow am See auf. Aufgrund der im Ergebnis der Nutzungshistorie bestehenden Altlastenverdachtsmomente wurde im Zeitraum von 11/2018 bis 03/2019 eine Orientierende Untersuchung¹ (OU) im Sinne von § 2 Abs. 3 BBodSchV² i. V. m. § 9 Abs. 2 BBodSchG³ durchgeführt.

Im Ergebnis der Kontaminationsuntersuchungen wurden auf Teilflächen der Liegenschaft nutzungsbedingt erhöhte Schadstoffgehalte der oberflächennahen Auffüllungen, insbesondere durch Schwermetalle und Polycyclische aromatische Kohlenwasserstoffe (PAK), nachgewiesen. Mit Stellungnahme des Staatlichen Amtes für Landwirtschaft und Umwelt Mittleres Mecklenburg (StALU MM) vom 2021-05-04 sind für die v. g. Verdachtsbereiche Detailuntersuchungen zur abschließenden Gefährdungsbeurteilung durchzuführen.

¹ S.I.G. – DR.-ING. STEFFEN GmbH: Altlastenuntersuchungen im Rahmen der Erstellung des B-Planes Nr. 41 "Am Mühlenbach" in Krakow am See – Mechanische Werkstatt. Stand: 2019-03-05.

Bundes-Bodenschutz- und Altlastenverordnung vom 12. Juli 1999 (BGBI. I S. 1554), die zuletzt durch Artikel 126 der Verordnung vom 19. Juni 2020 (BGBI. I S. 1328) geändert worden ist.

Bundes-Bodenschutzgesetz vom 17. März 1998 (BGBI. I S. 502), das zuletzt durch Artikel 7 des Gesetzes vom 25. Februar 2021 (BGBI. I S. 306) geändert worden ist.

Ausgangssituation

Im Rahmen der im Zeitraum von 11/2018 bis 03/2019 durchgeführten OU wurden in Abstimmung mit der Unteren Bodenschutzbehörde 7 Rammkernsondierungen (s. Anlage 1) bis in eine Tiefe von 3,00 m u. GOK abgeteuft und anhand der Parameter nach LAGA TR Boden Tab. II.1.2-1 (Mindestuntersuchungsprogramm) analysiert.

Die Konzentrationen der Kontaminationsleitparameter auf den Altlastenverdachtsflächen (ALVF)

- Farbgebung (RKS05/18 bzw. MP02/18),
- neueres Farb- und Öllager (RKS07/18) und
- älteres Farb- und Öllager (RKS 10/18 bzw. MP03/18)

sind in Tab. 1 zusammengefasst.

Tab. 1 Orientierende Untersuchung – Konzentrationen der Leitparameter [1]

Parameter	Einheit	MP02/18	02/07/18	MP03/18
Labornummer		19-00959-001	19-00959-004	19-00959-007
Entnahmetiefe	m u. GOK	0,10 - 1,00	0,20 - 1,00	0,10 - 1,00
Arsen	mg/kg TS	5,3	22,5	3,8
Blei	mg/kg TS	77,3	1670	62,8
Cadmium	mg/kg TS	1,3	1,1	0,13
Kupfer	mg/kg TS	82,3	374	87,4
Nickel	mg/kg TS	13,4	64,9	12
Quecksilber	mg/kg TS	<0,1	0,13	<0,1
Thallium	mg/kg TS	<0,1	1,4	<0,1
Zink	mg/kg TS	861	243	103
PAK ₁₆	mg/kg TS	15,24	2,06	1,14
Benzo(a)pyren	mg/kg TS	1,3	0,26	0,13

Die aus dem Auffüllungshorizont im Bereich der ALVF "neueres Farb- und Öllager" entnommene Einzelprobe 02/07/18 (RKS 07/18, 0,20 – 1,00 m u. GOK) wies erhöhte Schwermetallgehalte – insbesondere durch Blei i.H.v. 1.670 mg/kg TS – auf. Weitere Proben aus dem Auffüllungshorizont (MP02/18, RKS04 – 05/18, 0,10 – 1,00 m u. GOK) zeigten gleichermaßen erhöhte PAK- und Schwermetallkonzentrationen, welche die Prüfwerte nach Anh. 2 Tab. 1.4 BBodSchV bei Direktkontakt Boden – Mensch (Nutzungsszenario: Wohngebiete, Kinderspielflächen) vereinzelt überschreiten.

Die Schadstoffgehalte nahmen im Allgemeinen unterhalb des Auffüllungshorizontes bzw. mit zunehmender Tiefe ab. Als Belastungsursache kommen daher primär Beimengungen der anthropogenen Auffüllungen in Form von Bauschutt und Feuerungsresten in Betracht.

Da für die o.g. Leitparameter beauftragungsgemäß keine Eluatuntersuchungen durchgeführt wurden, konnte das Gefährdungspotential durch die im Feststoff nachgewiesenen Kontaminanten, insbesondere über den Wirkungspfad Boden \rightarrow Sickerwasser \rightarrow Grundwasser, nicht abschließend beurteilt werden.

Untersuchungsmethodik

Im Ergebnis des gemeinsamen Ortstermines mit dem StALU MM am 2021-05-25 wurden die drei Verdachtsbereiche ergänzend durch eine horizontbezogene Mischprobe (MP01/21) aus drei Schürfgruben (S01/21 bis S03/21) beprobt und anhand der Parameter nach LAGA TR Boden (Feststoff und Eluat) analysiert.

Die räumliche Zuordnung der Schürfe ist dem Lageplan in Anlage 1 zu entnehmen.

Während der Feldarbeiten wurden die Bodenarten und -horizonte sensorisch angesprochen, benannt und organoleptisch nach Farbe, Aussehen und Geruch bewertet. Grundlage der Bodenansprache und Dokumentation bildeten die Regelungen der DIN 4023, DIN EN ISO 14688-1, DIN EN ISO 14689-1:2011-06 sowie die Bodenkundliche Kartieranleitung (KA5). Die Bedingungen bei der Probenahme gehen aus dem Probenameprotokoll (Anlage 2) hervor.

Im Sinne der Unfallverhütung wurden die Schürfe nach Abschluss der Feldarbeiten profilgerecht mit den seitlich gelagerten Ausbaustoffen vollständig verfüllt.

Untersuchungsergebnisse

Die Ergebnisse der umweltchemischen Analysen sind in folgenden Prüfberichten dokumentiert

(1) AR-21-GE-006740-01, EUROFINS Umwelt Nord GmbH, 2021-07-19

und den Zuordnungskriterien der LAGA TR Boden (2004) Tab. II.1.2-2 bis -5 gegenübergestellt (Anlage 3).

Die chemische Analyse der entnommenen Mischprobe (s. Tab. 2) weist erhöhte Feststoffgehalte von Kupfer sowie durch polyzyklische aromatische Kohlenwasserstoffe (PAK) nach (s. Tab. 2).

Tab. 2 Detailuntersuchung – Konzentrationen der Leitparameter

Bezeichnung	Kupfer	PAK ₁₆	Benzo(a)pyren
	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
MP01/21	263	16,8	2,1

Die weiteren untersuchten anorganischen und organischen Inhaltsstoffe im Feststoff sowie korrespondierenden Eluatparameter wurden lediglich in geringen Konzentrationen bzw. in untergeordneter Größenordnung nachgewiesen.

Bewertung

Beurteilungskriterien

Gemäß §3 BBodSchV werden Verdachtsflächen oder altlastverdächtige Flächen bei Vorliegen entsprechender Hinweise i. d. R. in zwei Phasen untersucht:

- Orientierende Untersuchung (OU) nach §2 Nr. 3 BBodSchV (Phase IIa)
- Detailuntersuchung (DU) nach §2 Nr. 4 BBodSchV (Phase IIb)

Zweck der OU ist die abschließende Feststellung, ob der Verdacht einer schädlichen Bodenveränderung oder Altlast ausgeräumt ist oder ein hinreichender Verdacht für das Vorliegen einer schädlichen Bodenveränderung oder Altlast besteht (konkrete Anhaltspunkte gemäß §9 Abs. 2 BBodSchG). Liegen solche konkreten Anhaltspunkte vor, so sind die notwendigen Untersuchungen zur abschließenden Gefährdungsabschätzung im Rahmen einer DU durchzuführen.

Im vorliegenden Fall ist unter Berücksichtigung der gegenwärtigen und planungsrechtlich zulässigen Nutzung sowie des Befundes der aktuellen Untersuchungen eine Betrachtung der folgende Wirkungspfade erforderlich, um mögliche Auswirkungen auf die zu betrachtenden Schutzgüter zu erfassen:

a) Boden → Mensch (Direktkontakt)

Für die Beurteilung des Direktkontaktes Boden – Mensch (Nutzungsszenario: Wohngebiete, Kinderspielflächen) gelten die Prüfwerte nach Anh. 2 Tab. 1.4 BBodSchV. Die Prüfwerte beziehen sich gemäß Anh. 1 Abs. 2.1 Tab. 1 BBodSchV auf einen Kontaktbereich für die orale und dermale Schadstoffaufnahme von 0 bis 10 cm bzw. eine von Kindern maximal erreichbare Tiefe von 35 cm.

In Mecklenburg-Vorpommern⁴ wird zur Bewertung von PAK bezüglich des Wirkungspfades Boden - Mensch abweichend von den o. g. Regelungen die Anwendung folgender Prüfwerte für den Leitparameter Benzo(a)pyren empfohlen:

Wohngebiete 1,0 mg/kg TM
Kinderspielflächen 0,5 mg/kg TM

b) Boden → Sickerwasser → Grundwasser

Hinsichtlich des Wirkungspfades Boden → Sickerwasser → Grundwasser sind die Prüfwerte gemäß Anh. 2, Tab. 3.1 BBodSchV am Ort der Beurteilung (Übergang von der ungesättigten in die gesättigte Bodenzone) maßgeblich. Die erforderlichen Prüfmethoden in Form von Säulenversuchen bzw. Sickerwasserprognosen sind vergleichsweise zeit- und kostenintensiv, sodass sie nur in Einzelfällen zur Anwendung kommen. Im Rahmen der vorliegenden OU wurde daher auf die Befunde der chemischen Analysen anhand der

⁴ Ministerium für Landwirtschaft und Umwelt Mecklenburg-Vorpommern: Bewertung von Polyzyklischen aromatischen Kohlenwasserstoffen (PAK) bezüglich des Wirkungspfades Boden - Mensch. Schwerin, 13.04.2017.

Parameterliste der LAGA TR Boden zurückgegriffen und orientierend mit folgenden Referenzwerten verglichen:

- Prüf- und Maßnahmenschwellenwerte nach LAWA (1994)⁵ Anh. 3, Tab. 3 (Boden als Schadstoffquelle für Grundwasserkontaminationen)
- Zuordnungswerte nach LAGA TR Boden (2004) Tab. II.1.2-2 bis -5, welche bei Ausweisung der Einbauklassen auch Einflüsse auf das Grundwasser berücksichtigen

Eine Exposition über den Pfad Boden → Nutzpflanze ist für die hier relevante Nutzungskategorie unter Beachtung der aufgenommenen Bodenprofile und der vorliegenden Ergebnisse aus den analytischen Untersuchungen nicht zu erkennen.

Gefährdungsbeurteilung

a) Boden \rightarrow Mensch

Tab. 3 zeigt die Analysenergebnisse der Schwermetall-Gehalte sowie die Konzentration des Leitparameters Benzo(a)pyren für den Wirkungspfad Boden → Mensch im bewertungsrelevanten Tiefenintervall 0 bis 35 cm.

Parameter	Einheit	MP01/21	BBodSchV Anh. 2 Tab. 1.4 Prüfwerte Boden → Mensch				
			Kinderspielflächen Wohngel				
Arsen	mg/kg TS	12,20	25	50			
Blei	mg/kg TS	121,00	200	400			
Cadmium	mg/kg TS	0,40	10	20			
Chrom	mg/kg TS	23,00	200	400			
Nickel	mg/kg TS	37,00	70	140			
Quecksilber	mg/kg TS	0,23	10	20			
Benzo(a)pyren	mg/kg TS	2,10	0,50	1,00			

Tab. 3 Bewertung des Wirkungspfades Boden – Mensch

Der Leitparameter Benzo(a)pyren wurde mit 2,10 mg/kg TS nachgewiesen und überschreitet damit die v.g. Prüfwerte von 0,5 bzw. 1,0 mg/kg TS. Als Ursache der festgestellten Belastungen kommen v. a. die Beimengungen der anthropogenen Auffüllungen, z. B. Pyrolyseprodukte aus der oberflächlichen Verbrennung von Kohle, Holz etc., in Betracht.

Im Zuge der geplanten Folgenutzung sind aufgrund der festgestellten (Schad-)Stoffkonzentrationen nach gegenwärtigem Kenntnisstand gefahrenrelevante Sachverhalte und mögliche Gefährdungen des Schutzgutes "menschliche Gesundheit" ohne zusätzliche Maßnahmen zunächst nicht grundsätzlich auszuschließen. Unter Berücksichtigung aller für die menschliche Gesundheit

⁵ Länderarbeitsgemeinschaft Wasser (LAWA): *Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden*. Stand: Januar 1994.

relevanten Wirkungspfade ist jedoch festzustellen, dass nach den durchgeführten Untersuchungen im gegenwärtigen Zustand (u.a. vorhandene Versiegelungen oder schützende, flächig ausgeprägte Vegetationsdecke) von der Ablagerung keine akuten Gefahren ausgehen.

Zur Unterbrechung des Wirkungs- / Kontaminationspfades kommen v. a. folgende Varianten in Betracht:

- Austausch der belasteten Bodenareale (Dekontamination) bis in eine Mindesttiefe von 0,35 m u. GOK und anschließende Wiederverfüllung der entstehenden Hohlformen mit unbelastetem Bodenmaterial
- Abdeckung (Sicherung) mit einer unbelasteten Bodenschicht oder durch Flächenversiegelung

Zur Festlegung der weiteren Vorgehensweise und Reduzierung des diesbezüglichen Ressourceneinsatzes sollte durch den Vorhabenträger zunächst geprüft werden, inwieweit der betreffende Ablagerungsbereich im Rahmen der Nachnutzung überhaupt zugänglich und somit emissionswirksam ist. Die festgestellten gefahrenrelevanten Sachverhalte werden durch bauliche Eingriffe (Versiegelung oder Umgestaltung einschl. Bodenabtrag in Verkehrs- und Nebenflächen) zukünftig u. U. ohnehin unwirksam.

b) Boden \rightarrow (Sickerwasser \rightarrow) Grundwasser

Die gegenwärtige Standortsituation ermöglicht einen Schadstoffübergang vom Boden ins Grundwasser in Form versickernder Niederschläge auf unversiegelten (Teil-)Flächen der Liegenschaft. Die belasteten Sedimente treten zudem in unmittelbaren Kontakt mit dem oberflächennahen, ungeschützten Grundwasserleiter bzw. befinden sich teilweise in der gesättigten Bodenzone.

Untersuchungen zu den Schadstoffgehalten und der -verteilung am Ort der Beurteilung (Übergang von der ungesättigten in die gesättigte Bodenzone; Sickerwasseruntersuchung/-prognose) liegen nicht vor. Zur Beurteilung des Schadstoffübergangs über den Wirkungspfad Boden (→ Sickerwasser) → Grundwasser wird daher ausschließlich auf die Befunde der vorliegenden Feststoffuntersuchungen bis zur erkundeten Aufschlusstiefe zurückgegriffen.

Tab. 4 Bewertung des Wirkungspfades Boden → Grundwasser

Drobonhoroichnung	PAK ₁₆	Benzo(a)pyren	Naphthalin	Kupfer					
Probenbezeichnung	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]					
LAWA (1994) Anh. 3, Tab. 3 Orientierungswerte für Bodenbelastungen									
Prüfwert	2 - 10)	1 - 2						
Maßnahmenschwellenwert	10 - 100)	5						

Drahanharaiahnung	PAK ₁₆	Benzo(a)pyren	Naphthalin	Kupfer	
Probenbezeichnung	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]	
	LAGA TR Boden (2004 Zuordnung	5			
Z 0	3	0,6		40	
Z 1	3 (9)	0,9		120	
Z 2	30	3		400	
	Detailuntersuc	chung 2021			
MP01/21	16,8	2,1	<0,05	263	

Die PAK-Konzentrationen innerhalb der oberflächennahen Auffüllung von 16,8 mg/kg TS überschreitet den Prüfwert der LAWA bzw. den Zuordnungswert zur Kategorie Z 1 nach LAGA.

Aufgrund des geologischen Aufbaus durch lokale Vertorfung sind relativ günstige Bedingungen vorhanden, um organische Schadstoffe zumindest über einen begrenzten Zeitraum zu sorbieren. Die Sickerwasserneubildung in Form perkolierender Niederschläge wird durch die vorhandene Flächenversiegelung zudem weitgehend unterbunden. Ein Nachweis, dass aus den abgelagerten Auffüllungen auch PAK gelöst werden, welche die Prüfwerte der BBodSchV für den Pfad Boden → Grundwasser überschreiten, liegt nicht vor.

In dem zu berücksichtigenden Transfer im Grundwasser selbst ist vor allem zu beachten, dass die Menge des mit Schadstoffen angereicherten Sickerwassers im Verhältnis zur Wassermenge im unterlagernden Grundwasserkörper als vergleichsweise klein bewertet wird. Selbst bei einem mit den derzeitigen Untersuchungen bislang nicht belegten Übertritt von Sickerwasser mit den bislang bekannten Schadstoffgehalten wird eine signifikante bzw. gefahrenrelevante Beeinträchtigung des Grundwassers im eigentlichen Grundwasserleiter als hinreichend unwahrscheinlich bewertet. Dementsprechend sind bei einer Entlastung dieses Grundwassers in den südlich gelegenen Vorfluter auch keine nachteiligen Einflüsse auf das Oberflächenwasser zu erwarten.

Zusammenfassend leitet sich damit aus gutachterlicher Sicht auch unter Verweis auf die in § 4 Abs. 7 BBodSchV formulierten Faktoren zur Bewertung der Verhältnismäßigkeit von Maßnahmen (geringe Schadstofffrachten, lokal begrenzt erhöhte Schadstoffkonzentrationen) kein Handlungsbedarf für weitere Untersuchungen ab.

Abfallrechtliche Einordnung (Verwertung von Aushubböden)

Unter Einbeziehung der aus abfallrechtlicher Sicht maßgeblichen Zuordnungskriterien der LAGA M20 ordnen sich die potentiellen Aushubchargen in folgende Einbauklassen ein:

MP01/21 Z 2 Eingeschränkter Einbau mit definierten (Einbauklasse 2) technischen Sicherungsmaßnahmen

Potenzielle Aushubchargen sind daher am Standort nur eingeschränkt verwertbar (z. B. unterhalb von Flächenversiegelungen, mind. 1 m oberhalb des höchsten zu erwartenden Grundwasserstandes). Im Zuge baulicher Eingriffe ist daher grundsätzlich mit erhöhten Entsorgungsvolumina und -kosten zu rechnen (investitions- bzw. nutzungsbedingte Risiken).

Für das Auf- oder Einbringen von Bodenmaterial auf oder in eine durchwurzelbare Bodenschicht oder die Herstellung einer durchwurzelbaren Bodenschicht sind die von der TR LAGA erfassten Verwertungsbereiche nicht anzuwenden. Die Anforderungen des § 12 BBodSchV sind zu beachten.

Generell gilt der Grundsatz, dass eine schädliche Veränderung der Bodeneigenschaften (z. B. durch einen Schadstoffeintrag bzw. eine Kontaminationsverlagerung in bisher unbelastete Bereiche) zu vermeiden ist (s. § 1 BBodSchG). Dem trägt die im § 7 BBodSchG normierte Pflicht zur Vorsorge vor dem Entstehen schädlicher Bodenveränderungen, die durch die Nutzung auf dem Grundstück oder in dessen Einwirkungsbereich hervorgerufen werden können, Rechnung.

Die Vorsorgewerte nach § 8 Abs. 2 BBodSchG i. V. m. Anh. 2, Tab. 4.1 / 4.2 BBodSchV definieren Bodenwerte, bei deren Überschreitung unter Berücksichtigung von geogenen oder großflächig siedlungsbedingten Schadstoffgehalten in der Regel davon auszugehen ist, dass die Besorgnis einer schädlichen Bodenveränderung besteht. Die Vorsorgewerte für PAK bzw. Benzo(a)pyren werden im Feststoff überschritten.

Parameter	Einheit	MP01/21	Vorsorgewert Anh. 2 Tab. 4.1, 4.2 BBodSchV
PAK	[mg/kg TS]	16,8	3,0
Benzo(a)pyren	[mg/kg TS]	2,1	0,3

Das Auf- oder Einbringen bzw. eine Verwertung in der durchwurzelbaren Bodenschicht (Oberboden) ist demnach unzulässig.

Gutachterliche Empfehlung zur weiteren Vorgehensweise

Im Ergebnis der durchgeführten Detailuntersuchung ist festzustellen, dass vom Vorhabenstandort bei der aktuellen Nutzung keine akute Schutzgutgefährdung der menschlichen Gesundheit
ausgeht. Im Hinblick auf die avisierte Folgenutzung zu Wohnzwecken sind mögliche Einschränkungen und Konflikte infolge von Direktkontakt zur oberflächennahen belasteten Ablagerung auf
unversiegelten Teilflächen der Liegenschaft gegenwärtig nicht vollständig auszuschließen. Gefährdungen der Schutzgüter Grund- und Oberflächenwasser sind aus fachtechnischer Sicht hingegen mit hinreichender Wahrscheinlichkeit nicht zu erwarten.

Zur Festlegung der weiteren Vorgehensweise sollte durch den Vorhabenträger zunächst geprüft werden, inwieweit der betreffende Ablagerungsbereich im Rahmen der Nachnutzung überhaupt zugänglich und somit emissionsrelevant ist oder ob die u. U. gefahrenrelevanten Sachverhalte

durch bauliche Eingriffe (Versiegelung oder Umgestaltung einschl. Bodenabtrag in Verkehrs- und Nebenflächen) zukünftig ohnehin unwirksam werden.

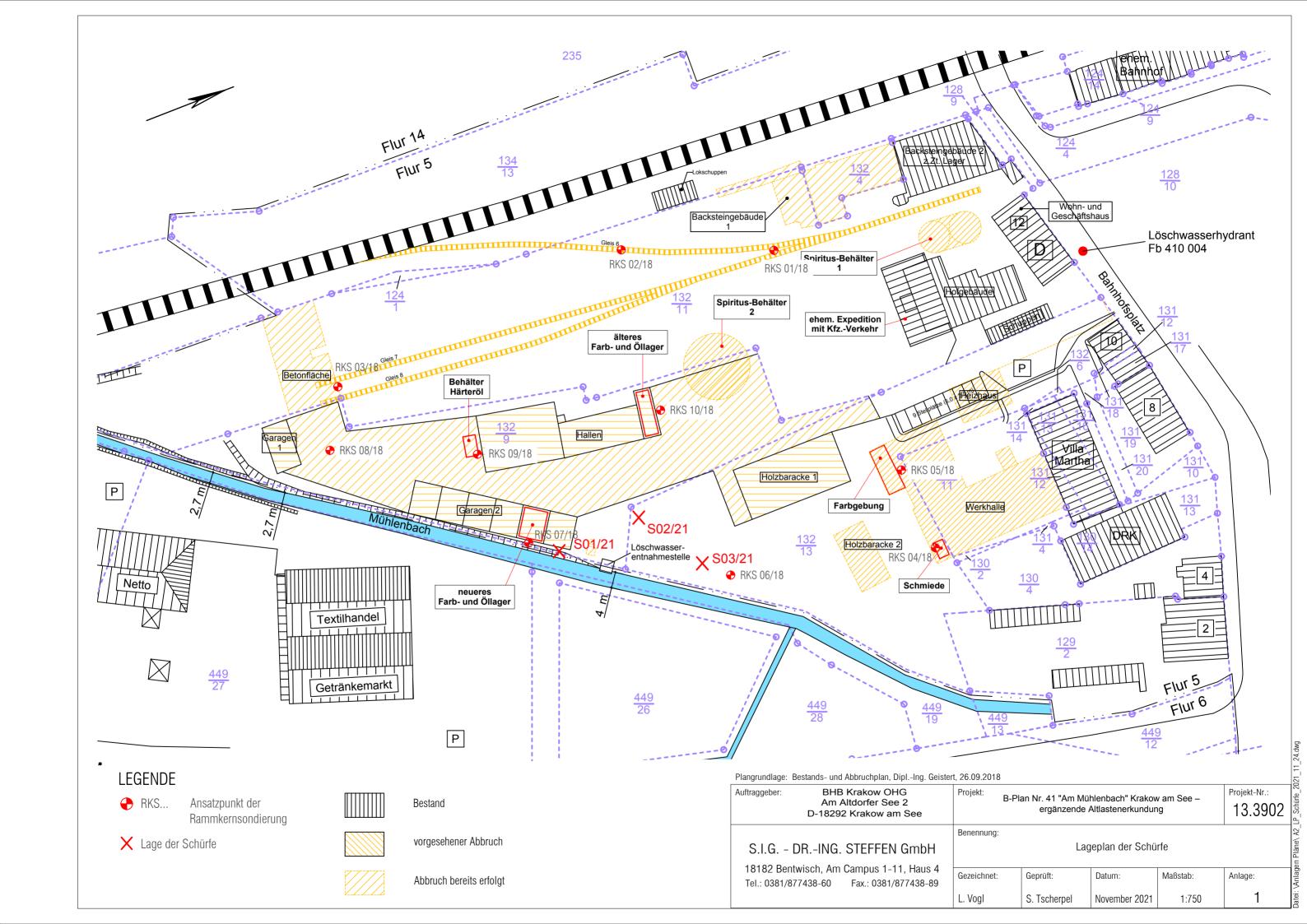
Vorbehaltlich der Prüfung durch die zuständige Behörde leitet sich dementsprechend zunächst kein Handlungsbedarf für weitere Maßnahmen am Standort ab.

Für Rückfragen und Erläuterungen stehen wir gerne zur Verfügung.

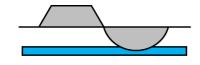
Mit freundlichen Grüßen

S.I.G-DR.-ING. STEFFEN GmbH

Sascha Tscherpel M. Sc.


Anlagen

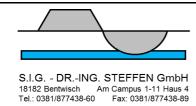
- 1 Lageplan der Schürfe, M 1:750
- 2 Probenahmeprotokoll
- 3 Prüfbericht AR-21-GE-006740-01, Eurofins Umwelt Nord GmbH, 2021-07-19


Verteiler

Blumenthal, Claudia claudia.blumenthal@stalumm.mv-regierung.de

Schmidt, Stephan <u>stephan-schmidt@bhb-krakow.com</u>

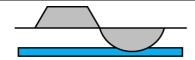
Protokoll der Probenahme nach LAGA PN98


S.I.G. - DR.-ING. STEFFEN GmbH

Projekt-Nr.: 13.3902 Protokoll-Nr.: MP01/21

S.I.G DRING. STEFFEN GmbH 18182 Bentwisch Am Campus 1-11 Haus 4 Tel.: 0381/877438-60 Fax: 0381/877438-89			
Veranlasser der Probenahme:	BHB Krakow OHG Am Altdorfer See 2 D-18292 Krakow am See		
Grund der Probenahme	Ergänzende Altlastenerkundung		
Datum Probenahme:	2021-07-09		
Uhrzeit Probenahme:	12:00 - 13:00		
Probenehmer/Bearbeiter:	Sascha Tscherpel M.Sc.		
Anwesende/Zeugen:	Stephan Schmidt		
Meteorologische Daten Temperatur: 25 °C	Allgemeine Charakterisierung: sonnig		
Herkunft des Abfalls (Anschrift):	B-Plan Nr. 41 "Am Mühlenbach" Krakow am See Flur 5; Flurstücke 132/15, 132/17, 132/18, 132/19 D-18292 Krakow am See		
Vermutete Schadstoffe:	Schwermetalle, PAK		
Untersuchungsstelle Labor:	Eurofins Umwelt Nord GmbH Werner-Nordmeyer-Straße 3 D-31226 Peine		
Abfallart / allgemeine Beschreibung	mineralischer Abfall, Boden (<10 Vol% mineral. Fremdbestandteile)		
Farbe:	braunbunt		
Geruch:	unspezifisch		
Konsistenz:	halbfest		
Körnung / Größtkorn (mm)	≤50 mm		
Gesamtvolumen / Form der Lagerung:	Auffüllung, auf Baugelände anstehend, ca. 3.000 m ² , T = 1,00 m		
Lagerungsdauer:	unbekannt		
Einflüsse auf die Probe / den Abfall	Witterung		
Probenahmegerät und -material:	Spaten, Probenstecher und Schaufel (beides Edelstahl)		
Art und Volumen der Proben			
Einzelproben			
Mischproben	3 Handschürfe à 1 MP (horizontbezogen), 2 l		
Sammelproben			
Laborproben	1 LP, 5 I = MP01/21		
Sonderproben			
Probenvorbereitung:	fraktioniertes Schaufeln, Teilen mittels Probenstecher		
Probentransport und -lagerung:	Kfz, PP Eimer		
Kühlung:	-		
Vor-Ort-Untersuchungen:	-		
Beobachtungen bei der Probenahme:	-		

Bemerkungen:	


Protokoll der Probenahme nach LAGA PN98

Projekt-Nr.: 13.3902 Protokoll-Nr.: MP01/21

Protokoll der Probenahme nach LAGA PN98

S.I.G. - DR.-ING. STEFFEN GmbH 18182 Bentwisch Am Campus 1-11 Haus 4 Tel.: 0381/877438-60 Fax: 0381/877438-89 Projekt-Nr.: 13.3902 Protokoll-Nr.: MP01/21

Schurf S03/21

Unterschrift Probenehmer:

Sascha Tscherpel M.Sc.

Name

S.I.G.-DR.-ING. STEFFEN GmbH

Am Campus 1-11, Haus 4 Telefon: 0381 / 877 438 -60 18182 Bentwisch Telefax: 0381 / 877 438 -89 www.sig-mv.de E-Mail: info@sig-mv.de

Kontrolle der chemischen Beschaffenheit nach LAGA TR Boden (2004)

Projekt:	B-Plan Nr. 41 "Am Mühlenbach" Kr	Projekt-Nr.:	13.3902		
	ergänzende Altlastenerkundung				
Probenummer:	MP01/21	Labornummer:	721015557		
Probenmaterial:	Auffüllung: Sand, schluffig, z.T. organisch, Bauschutt, Feuerungsreste				

Feststoffgehalte im Bodenmaterial

Dimension	Messwerte	Z 0 (Sand)	Z 0 (Lehm/	Z 0 (Ton)	Z 0* 1)	Z 1	Z 2
			Schluff)				
mg/kg TS	12,2	10	15	20	15 ²⁾	45	150
mg/kg TS	121	40	70	100	140	210	700
mg/kg TS	0,4	0,4	1	1,5	1 ³⁾	3	10
mg/kg TS	23	30	60	100	120	180	600
mg/kg TS	263	20	40	60	80	120	400
mg/kg TS	37	15	50	70	100	150	500
mg/kg TS	0,23	0,1	0,5	1	1	1,5	5
mg/kg TS	<0,2	0,4	0,7	1	0,7	2,1	7
mg/kg TS	247	60	150	200	300	450	1500
Masse-%	2,9	0,5 (1,0) 5)	0,5 (1,0) ⁵⁾	0,5 (1,0) ⁵⁾	0,5 (1,0) ⁵⁾	1,5	5
mg/kg TS	<1,0	1	1	1	1 ⁶⁾	3 8)	10
mg/kg TS	100	100	100	100	(400) ⁷⁾	(600) ⁷⁾	(2000) ⁷⁾
	<40	-	-	-	200 7)	300 ⁷⁾	1000 7)
mg/kg TS	n.b.	1	1	1	1	1	1
mg/kg TS	n.b.	1	1	1	1	1	1
mg/kg TS	n.b.	0,05	0,05	0,05	0,05	0,15	0,5
mg/kg TS	16,8	3	3	3	3	3 (9) ⁹⁾	30
mg/kg TS	2,1	0.3	0,3	0.3	0,6	0.9	3
	mg/kg TS	mg/kg TS 12,2 mg/kg TS 121 mg/kg TS 0,4 mg/kg TS 23 mg/kg TS 263 mg/kg TS 0,23 mg/kg TS <0,2	mg/kg TS 12,2 10 mg/kg TS 121 40 mg/kg TS 0,4 0,4 mg/kg TS 23 30 mg/kg TS 263 20 mg/kg TS 37 15 mg/kg TS 0,23 0,1 mg/kg TS <0,2	Schluff) mg/kg TS 12,2 10 15 mg/kg TS 121 40 70 mg/kg TS 0,4 0,4 1 mg/kg TS 23 30 60 mg/kg TS 263 20 40 mg/kg TS 37 15 50 mg/kg TS 0,23 0,1 0,5 mg/kg TS <0,2	Schluff) mg/kg TS 12,2 10 15 20 mg/kg TS 121 40 70 100 mg/kg TS 0,4 0,4 1 1,5 mg/kg TS 23 30 60 100 mg/kg TS 263 20 40 60 mg/kg TS 37 15 50 70 mg/kg TS 0,23 0,1 0,5 1 mg/kg TS <0,2	Schluff) mg/kg TS 12,2 10 15 20 15 ²) mg/kg TS 121 40 70 100 140 mg/kg TS 0,4 0,4 1 1,5 1 ³) mg/kg TS 23 30 60 100 120 mg/kg TS 263 20 40 60 80 mg/kg TS 37 15 50 70 100 mg/kg TS 0,23 0,1 0,5 1 1 mg/kg TS <0,2	Schluff) mg/kg TS 12,2 10 15 20 15 ²⁾ 45 mg/kg TS 121 40 70 100 140 210 mg/kg TS 0,4 0,4 1 1,5 1 ³⁾ 3 mg/kg TS 23 30 60 100 120 180 mg/kg TS 263 20 40 60 80 120 mg/kg TS 37 15 50 70 100 150 mg/kg TS 0,23 0,1 0,5 1 1 1,5 mg/kg TS 20,2 0,4 0,7 1 0,7 2,1 mg/kg TS 247 60 150 200 300 450 Masse-% 2,9 0,5 (1,0) ⁵⁾ 0,5 (1,0) ⁵⁾ 0,5 (1,0) ⁵⁾ 0,5 (1,0) ⁵⁾ 1,5 mg/kg TS 100 100 100 100 (400) ⁷⁾ (600) ⁷⁾ mg/kg TS n.b. <t< td=""></t<>

Eluatkonzentrationen im Bodenmaterial

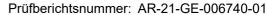
Parameter	Dimension	Messwerte	Z 0/Z 0*		Z 1.1	Z 1.2	Z 2
pH-Wert	-	8,5	6,5-9,5		6,5-9,5	6-12	7-12,5
Leitfähigkeit	μS/cm	110	250		250	1500	3000
Chlorid	mg/l	<1,0	30		30	50	150
Sulfat	mg/l	9,4	20		20	50	600
Arsen	μg/l	2	14		14	20	50
Blei	μg/l	<1	40		40	80	100
Cadmium	μg/l	<0,3	1,5		1,5	3	5
Chrom (gesamt)	μg/l	<1	12,5		12,5	25	100
Kupfer	μg/l	5	20		20	60	200
Nickel	μg/l	<1	15		15	20	100
Quecksilber	μg/l	<0,2	< 0,5		< 0,5	1	2
Zink	μg/l	<10	150		150	200	400
Phenol-Index	μg/l	<10	20	•	20	40	100

Einstufung

Bemerkungen:

Tag der Auswertung:

2021-11-23


n.b. nicht berechenbar, da alle Werte <BG

Für Bodenmaterial, das nicht bodenartspezifisch zugeordnet werden kann bzw. das als Gemisch verschiedener Bodenarten bei Baumaßnahmen (z. B. bei kleinräumig wechselnden Bodenarten) oder bei der Bodenbehandlung anfällt, gelten die Zuordnungswerte Z 0 der Tabelle II.1.2-2 (Feststoffgehalte) für die

- 1) maximale Feststoffgehalte für die Verfüllung von Abgrabungen unter Einhaltung bestimmter Randbedingungen (siehe "Ausnahmen von der Regel"
- 2) Der Wert 15 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 20 mg/kg 3) Der Wert 1 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,5 mg/kg
- 4) Der Wert 0,7 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,0 mg/kg
- 5) Bei einem C:N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%.
- 6) Bei Überschreitung ist die Ursache zu prüfen.
- 7) Die angegebenen Zuordnungswerte gelten für KW-Verbindungen mit einer Kettenlänge von C10 bis C22. Der Gesamtgehalt, bestimmt nach E DIN EN 14039 (C10 bis C40), darf insgesamt den in Klammem genannten Wert nicht überschreiten.

Z 2

- 8) Bei Überschreitung ist die Ursache zu prüfen
- 9) Bodenmaterial mit Zuordnungswerten > 3 mg/kg und ≤ 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden.
- 10) bei natürlichen Böden in Ausnahmefällen bis 300 mg/l
- 11) bei natürlichen Böden in Ausnahmefällen bis 120 μg/l

Seite 1 von 5

Eurofins Umwelt Nord GmbH - Werner-Nordmeyer-Straße 3 - 31226 - Peine

S.I.G. - DR.-ING. STEFFEN GmbH Am Campus 1-11/Haus 4 18182 Bentwisch

Titel: Prüfbericht zu Auftrag 72107623

Prüfberichtsnummer: AR-21-GE-006740-01

Auftragsbezeichnung: 13.3902 B-Plan Nr.41 Am Mühlendamm Krakow am See

Anzahl Proben: 1

Probenart: Boden
Probenahmedatum: 09.07.2021

Probenehmer: angeliefert vom Auftraggeber

Probeneingangsdatum: 14.07.2021

Prüfzeitraum: 14.07.2021 - 19.07.2021

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Karsten Goldbach Digital signiert, 19.07.2021

Niederlassungsleiter Yannick Haage Tel. +49 5171 5078984 Prüfleitung

				Probenbezei	chnung	MP01/21
				Probenahme	datum/ -zeit	09.07.2021
				Probennumn	ner	721015557
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Probenvorbereitung Feststo	ffe					
Probenmenge inkl. Verpackung	AN/f	RE000 GI	DIN 19747: 2009-07		kg	1,7
Fremdstoffe (Art)	AN/f	RE000 GI	DIN 19747: 2009-07			nein
Fremdstoffe (Menge)	AN/f	RE000 GI	DIN 19747: 2009-07		g	0,0
Siebrückstand > 10mm	AN/f	RE000 GI	DIN 19747: 2009-07			ja
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz		
Trockenmasse	AN/f	RE000 GI	DIN EN 14346: 2007-03	0,1	Ma%	89,8
pH in CaCl2	AN/f	RE000 GI	DIN ISO 10390: 2005-12			7,8
Anionen aus der Originalsul	bstanz	Z				
Cyanide, gesamt	AN/f	RE000 GI	DIN ISO 17380: 2013-10	0,5	mg/kg TS	< 0,5
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN 1	3657: 2003-0	1#	
Arsen (As)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	12,2
Blei (Pb)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	121
Cadmium (Cd)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	0,4
Chrom (Cr)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	23
Kupfer (Cu)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	263
Nickel (Ni)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	37
Quecksilber (Hg)	AN/f	RE000 GI	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	0,23
Thallium (TI)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2
Zink (Zn)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	247
Organische Summenparame	eter au		•			
TOC	AN/f	RE000 GI	DIN EN 15936: 2012-11	0,1	Ma% TS	2,9
EOX	AN/f	RE000 GI	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	AN/f	RE000 GI	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	AN/f	RE000 GI	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	100
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origina	alsubstanz		
Benzol	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Toluol	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Ethylbenzol	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
m-/-p-Xylol	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
o-Xylol	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Summe BTEX	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) 1)

				Probenbezeichnung Probenahmedatum/ -zeit		MP01/21
						09.07.2021
				Probennummer		721015557
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
LHKW aus der Originalsubs	tanz		I==	1		
Dichlormethan	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
trans-1,2-Dichlorethen	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
cis-1,2-Dichlorethen	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Chloroform (Trichlormethan)	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
1,1,1-Trichlorethan	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Tetrachlormethan	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Trichlorethen	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Tetrachlorethen	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
1,1-Dichlorethen	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
1,2-Dichlorethan	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Summe LHKW (10 Parameter)	AN/f	RE000 GI	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) 1)
PAK aus der Originalsubsta	nz					
Naphthalin	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Acenaphthylen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,07
Acenaphthen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Fluoren	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Phenanthren	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,44
Anthracen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,31
Fluoranthen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	2,4
Pyren	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	2,0
Benzo[a]anthracen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,9
Chrysen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,5
Benzo[b]fluoranthen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	2,7
Benzo[k]fluoranthen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,97
Benzo[a]pyren	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	2,1
Indeno[1,2,3-cd]pyren	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,2
Dibenzo[a,h]anthracen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,25
Benzo[ghi]perylen	AN/f	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	1,0
Summe 16 EPA-PAK exkl. BG	AN/f	RE000 GI	DIN ISO 18287: 2006-05		mg/kg TS	16,8
Summe 15 PAK ohne Naphthalin exkl. BG	AN/f	RE000 GI	DIN ISO 18287: 2006-05		mg/kg TS	16,8

Umwelt

				Probenbezeichnung Probenahmedatum/ -zeit		MP01/21
						09.07.2021
				Probennum	Probennummer	
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PCB aus der Originalsubsta	nz					
PCB 28	AN/f	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 52	AN/f	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 101	AN/f	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 153	AN/f	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 138	AN/f	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 180	AN/f	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
Summe 6 DIN-PCB exkl. BG	AN/f	RE000 GI	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)
PCB 118	AN/f	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
Summe PCB (7)	AN/f	RE000 GI	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)
Physchem. Kenngrößen a	us den	n 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
pH-Wert	AN/f	RE000 GI	DIN EN ISO 10523 (C5): 2012-04			8,5
Temperatur pH-Wert	AN/f	RE000 GI	DIN 38404-4 (C4): 1976-12		°C	23,0
Leitfähigkeit bei 25°C	AN/f	RE000 GI	DIN EN 27888 (C8): 1993-11	5	μS/cm	110
Anionen aus dem 10:1-Schi	ittelelı	uat nac	ch DIN EN 12457-4:	2003-01		
Chlorid (CI)	AN/f	RE000 GI	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	< 1,0
Sulfat (SO4)	AN/f	RE000 GI	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	9,4
Cyanide, gesamt	AN/f	RE000 GI	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005
Elemente aus dem 10:1-Sch	üttele	luat na	nch DIN EN 12457-4	: 2003-01		
Arsen (As)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,002
Blei (Pb)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	0,005
Nickel (Ni)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	AN/f	RE000 GI	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Thallium (TI)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,0002	mg/l	< 0,0002
Zink (Zn)	AN/f	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01
Org. Summenparameter aus	dem	10:1-S	chütteleluat nach [DIN EN 12457	-4: 2003-01	
Phenolindex, wasserdampfflüchtig	AN/f	RE000 GI	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

* Aufschluss mittels temperaturregulierendem Graphitblock

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von der Eurofins Umwelt West GmbH (Wesseling) analysiert. Die Bestimmung der mit RE000GI gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14078-01-00 akkreditiert.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

¹⁾ nicht berechenbar, da alle Werte < BG.