Orientierende Altlastenuntersuchung Passee, OT Tüzen

BAUVORHABEN: B-Plan Nr. 6 "Ferienpark Gutsanlage Tüzen"

AUFTRAGGEBER:

VAUWERK GmbH Strandstraße 96 18055 Rostock

AUFTRAGNEHMER:

Gerhart-Hauptmann-Straße 19, 18055 Rostock Telefon: +49 (0) 381 252 898 10

H.S.W.-PROJEKTNUMMER:

2022/41/679

BEARBEITER:

Dipl.-Ing. Katrin Jesch-Steinig ppa. Dipl.-Ing. Peter Steinig

ERSTELLT:

Rostock, 29.11.2022

Inhaltsverzeichnis

0.	Zusammentassung der Ergebnisse	2
1.	Veranlassung und Aufgabenstellung	2
1.1	Angaben zu Auftraggeber/ Auftragnehmer	2
1.2	Veranlassung und Untersuchungsziele	3
2.	Standortbeschreibung	4
2.1	Allgemeine Standortangaben	4
2.2	Historische Entwicklung und planungsrechtlich zulässige Nutzung der Flächen	4
2.2.1	Planungsrechtliche Nutzbarkeit des Untersuchungsraums	7
2.2.2	Vorschlag für den Untersuchungsumfang	7
2.3	Vorhandene Gutachten	8
2.4	Geographische Lage	8
2.5	Geologische Einordnung des Standortes	8
2.6	Hydro- und hydrogeologische Einordnung des Standortes	9
2.7	Bewertung der Schutzwürdigkeit des Bodens	10
2.8	Im Rahmen der aktuellen Untersuchungen durchgeführte Flächenbeprobung	11
2.9	Chemische Laboruntersuchungen	13
3.	Untersuchungsergebnisse	13
3.1	Geotechnische Ergebnisse	13
3.2	Analytische Ergebnisse	14
3.2.1	Altlastenrelevanz	14
3.3	Wirkungspfad Boden – Mensch	15
3.3.1	Wirkungspfad Boden – Mensch – Prüfwerte	15
3.3.2	Beurteilung der Auffüllung nach den Vorsorgewerten für Böden	15
3.3.3	Wirkungspfad Boden – Grundwasser – Geringfügigkeitsschwellenwerte gemäß LAWA	16
4.	Auswertung nach abfallrechtlichen Belangen – LAGA TR Boden (2003)	16
5.	Vorschläge zum weiteren Vorgehen	17
6.	Anlagen	19
7.	Quellenverzeichnis	19
8.	Literaturverzeichnis	19

Abbildungsverzeichnis

Abbildung 1 Übersicht zum Untersuchungsraum [U1.]	4
Abbildung 2 Untersuchungsraum in der TK von 1980 [U1.]	5
Abbildung 3 Untersuchungsraum im Luftbild von 1953 [U1.]	6
Abbildung 4 Untersuchungsraum im Luftbild von 1991 [U1.]	6
Abbildung 5 Untersuchungsraum mit Nutzungsarten laut B-Plan [U5.]	7
Abbildung 6 Abbildung Grundwasserflurabstand, -überdeckung, -fließrichtung	9
Abbildung 7 Abbildung Wasserschutzzonen	10
Abbildung 8 Beprobte Fläche im z- Raster, RKS 1 - 11 [U1.]	12
Tabellenverzeichnis	
Tabelle 1: Zuordnung der Boden-Probenahme zur Fläche	12
Tabelle 2: Erreichte Endteufen der RKS	13
Tabelle 3 Typusprofil des Standortes	13
Tabelle 4: Empfohlene Prüfwerte Benzo(a)pyren für M-V (mg/kg TS)	15

0. Zusammenfassung der Ergebnisse

Die Fa. VAUWERK GmbH beabsichtigt, das o.g. Gebiet in Tüzen, Gemeinde Passee, Landkreis Nordwestmecklenburg, zu einem Ferienpark zu entwickeln und dafür durch die Gemeinde Passee den B-Plan Nr. 6 aufstellen zu lassen.

Derzeit befindet sich der B-Plan in der Phase des Vorentwurfs. Im Rahmen der Gesamtstellungnahme des Landkreises Nordwestmecklenburg zum Vorentwurf vom 07.10.2022 [U3.] gibt es hinsichtlich der Aufklärung der Altlastensituation vor Ort von Seiten der Unteren Bodenschutzbehörde Nachforderungen mittels weiterer altlastensachverständiger Bodenuntersuchungen. Diese sollen der besseren Aushaltung der Grenzen der vorhandenen Altablagerungen sowie der Beurteilung der obersten Nutzungsebene des Bodens im Hinblick auf die geplante Nutzungsänderung dienen. Weiterhin soll auch eine abfallsachverständige Aussage zur Qualität der vorhandenen Altablagerung ermöglicht werden.

Der Untersuchungsraum hat eine Fläche von ca. 6.000 m².

Im Ergebnis der am 07.11. und 08.11.2022 durchgeführten 11 Rammkernsondierungen jeweils durch die vorhandene Altablagerung bis zum Liegenden und der oberflächennahen Beprobung der Nutzungsebene in einem Teufenbereich von 0,00 bis 0,35 m unter Geländeoberkante (m u. GOK) wurden keine Überschreitungen der aus bodenschutzfachlicher Sicht relevanten Beurteilungswerte für Benzo(a)pyren festgestellt. Bei der im Bereich des Auffüllungshorizontes gewonnenen Mischprobe, der zwischen 0,35 m u. GOK und dem Liegenden erkundet wurde, wurde eine Überschreitung ermittelt. Diese betrifft den Wirkungspfad Boden - Mensch für die Nutzung Kinderspielplätze.

Zusammenfassung der Wirkungspfade

Boden - Mensch; Nutzung Wohngebiete und Kinderspielflächen:

Der Wirkungspfad Boden – Mensch, Nutzung Park- und Freizeitanlagen ist in der Teufenlage 0,00 bis 0,35 m u. GOK und im Liegenden des Untersuchungsraumes nicht eröffnet.

Auffüllung Teufenbereich von 0,35 bis max. 9,20 m u. GOK: Überschreitung des Prüfwertes für den Parameter Benzo(a)pyren, somit ist eine Nutzung als Kinderspielflächen nicht zulässig. Die hier relevante Nutzungsart Wohngebiete bzw. Park- und Freizeitanlagen ist jedoch zulässig.

Veranlassung und Aufgabenstellung

1.1 Angaben zu Auftraggeber/ Auftragnehmer

Auf dem Gelände des B-Plangebietes sind ergänzende Altlastenuntersuchungen erforderlich, die für das weitere B-Planverfahren relevant sind.

Das betrifft insbesondere den Bereich der Altablagerung AA_Z_74_0230. Dort ist die Frage zu klären, ob Schadstoffbelastungen in der Abdeckung bestehen, welche Ferienparknutzungen beeinträchtigen könnten.

Aus diesem Grund beauftragte der Auftraggeber, die VAUWERK GmbH, Strandstraße 95, 18055 Rostock am 28.10.2022 eine ergänzende Altlastenuntersuchung für die betroffenen Flurstücke bei der H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH.

Grundlage des erteilten Auftrags war der gemeinsam zwischen dem Auftraggeber, der H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH und der Unteren Bodenschutzbehörde des Landkreises Nordwestmecklenburg abgestimmte Untersuchungsumfang [U4.].

Dabei wurden durch die für Probenahmen akkreditierte H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH (DAP-PL-14533-01-00) die folgenden Teilleistungen erbracht:

- Übernahme des durch die Untere Bodenschutzbehörde empfohlenen Untersuchungsprogramms,
 Aufstellung der Probenahmeplanung,
- Durchführung der Probenahme vor Ort,
- Auswertung der Ergebnisse der chemischen Analytik,
- Verfassung des Gutachterlichen Berichts zur ergänzenden Altlastenerkundung.

Im Auftrag der H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH wurden die erforderlichen Laborleistungen der chemischen Analytik einschließlich der termingerechten Bereitstellung und Rücknahme der Probenahmegefäße durch das akkreditierte Labor EUROFINS Umwelt Nord GmbH (DAkkS D-PL-14542-01-00) durchgeführt.

1.2 Veranlassung und Untersuchungsziele

Gegenstand des vorliegenden Berichtes ist eine ergänzende Bodenuntersuchung am Standort bei Zugrundelegung der nutzungsbezogenen Prüfwerte der BBodSchV (Prüfwerte gem. § 8 Abs. 1 Satz 2 Nr.1, Tabelle 1.4 des Bundesbodenschutzgesetzes -BBodSchG-), Wirkungspfad Boden – Mensch, für die direkte Aufnahme von Schadstoffen auf Kinderspielflächen, in Wohngebieten und Park- und Freizeitanlagen, weiterhin die Auswertung hinsichtlich der Vorsorgewerte der BBodSchV (Vorsorgewerte für Böden gem. § 8 Abs.2 Nr.1, Tabelle 4.1 und 4.2 des Bundesbodenschutzgesetzes -BBodSchG-) sowie nach der LAGA – Technischen Regeln für die Verwertung - 1.2 Bodenmaterial und sonstige mineralische Abfälle (LAGA-Boden 2004).

Ziel der Untersuchung soll eine Einschätzung der Altlastensituation vor Ort sein, die Aussagen zur möglichen Eintragung eines Sanierungsvermerks im Altlasten- und Bodenschutzkataster des Landes Mecklenburg-Vorpommern beinhaltet [U3.].

2. Standortbeschreibung

2.1 Allgemeine Standortangaben

Die geographische und topographische Beschreibung des Untersuchungsraumes ist in Kapitel 2.4 kurz dargestellt.

Die Lage des Vorhabens und die vereinbarten Grenzen der Untersuchung sind der nachfolgenden Abbildung zu entnehmen.

Abbildung 1 Übersicht zum Untersuchungsraum [U1.]

2.2 Historische Entwicklung und planungsrechtlich zulässige Nutzung der Flächen

Der Untersuchungsraum umfasst anteilig die Flurstücke 62/1 und 63/3 in der Gemarkung Tüzen, Flur 1.

Die von der Unteren Bodenschutzbehörde mit der Stellungnahme zum B-Planvorentwurf erteilte Auskunft aus dem Altlastenkataster hat ergeben, dass sich im Planungsgebiet "It. digitalem Altlastenund Bodenschutzkataster M-V eine Altablagerung (Deponie Tüzen, Kennziffer AA Z 74 0230)

befindet. Die genaue Lage und Ausdehnung der Altablagerung sind nicht dokumentiert. Wahrscheinlich entspricht die Lage der in der TK25 von 1980 dargestellten Grube. Dies passt etwa zur angegebenen Ausdehnung von ca. 45 * 45 m. Nach Zeitzeugenangaben erfolgte auf einem Teil des Flurstücks Nr. 62 zunächst die Grubenverfüllung etwa bis 1990-91, danach, bis 1993 wurden Teile des Flurstücks 63 als Kippe in Anspruch genommen.

Zur Mächtigkeit der Altablagerung liegen keine Angaben vor. Abdeckung wird mit 5 – 6 m angegeben. Sichere Angaben über Art und Menge der abgelagerten Abfälle liegen nicht vor.

Hausmüllverkippung ist erwähnt. Die Fläche gilt nach örtlicher Anschauung als durch Sicherungsmaßnahmen (Abdeckung) saniert.

Aktuelle landwirtschaftliche Nutzung bietet keine Gewähr, dass mit unbelasteten Bodenmaterialien abgedeckt wurde. Mit dieser Auskunft wird keine Gewähr für die Freiheit des weiteren Planungsgebietes von schädlichen Bodenveränderungen oder Altlasten übernommen" [U3.].

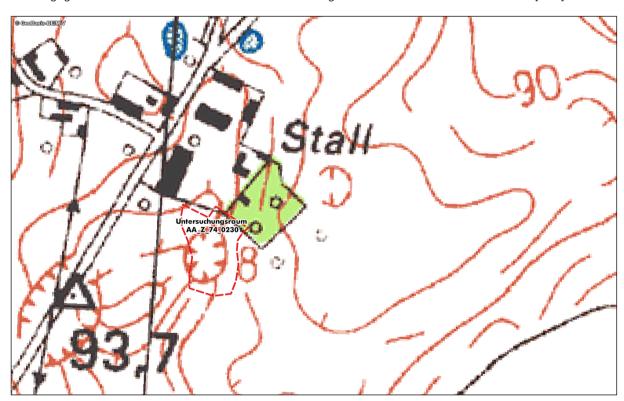


Abbildung 2 Untersuchungsraum in der TK von 1980 [U1.]

Die folgenden Luftbilder zeigen den Zustand des Untersuchungsraumes in den Jahren 1953 und 1991.

Abbildung 3 Untersuchungsraum im Luftbild von 1953 [U1.]

Abbildung 4 Untersuchungsraum im Luftbild von 1991 [U1.]

2.2.1 Planungsrechtliche Nutzbarkeit des Untersuchungsraums

Die Nutzbarkeit des Untersuchungsraumes soll im aktuellen B-Plan Nr. 6 der Gemeinde Passee festgeschrieben werden. Demnach sind dort innerhalb des Sondergebietes "SO- Freizeit- und Erlebnispark" sowohl Caravan-Stellplätze (St) als auch Aufstellflächen für Zelte geplant. Im nordöstlichen Bereich erstreckt sich der Untersuchungsraum in das Gebiet eines gesetzlich geschützten Biotopes hinein (grüne Linienmarkierung).

Abbildung 5 Untersuchungsraum mit Nutzungsarten laut B-Plan [U5.]

2.2.2 Vorschlag für den Untersuchungsumfang

Folgende Vorgehensweise wurde aus bodenschutzbehördlicher und sachverständiger Sicht als zielführend für diese Fläche festgelegt:

- 1. Untersuchung der Fläche mittels Flächen-Beprobung mit einer Mischprobe aus der Teufenlage:
 - o 0,00 0,35 m u. GOK.
- 2. Untersuchung des im Liegenden anstehenden Bodens mit einer Mischprobe aus insgesamt 11 Rammkernsondierungen (RKS 1 bis 11); dabei Ermittlung der Endteufe der Auffüllungen für die Aushaltung der Tiefe des abgelagerten Materials.

3. Untersuchung des Substrates der Auffüllung mit einer Mischprobe aus insgesamt 11 Rammkernsondierungen.

Der Lageplan der Probenahmen ist in der Anlage 1 - Prüfbericht H.S.W./07112022-PS01 und Prüfbericht H.S.W./08112022-PS02 nochmals dargestellt.

Aus gutachterlicher Sicht wird dem im Kapitel 1 von der Unteren Bodenschutzbehörde vorgeschlagenen Untersuchungsprogramm gefolgt. Danach sind die nachfolgend genannten Parameter zu analysieren:

- 1. Mischprobe aus der Flächen-Beprobung der Fläche: BBodSchV, Prüfwerte Wirkungspfad Boden Mensch,
- 2. Mischprobe aus der Endteufe der RKS: BBodSchV, Prüfwerte Wirkungspfad Boden Mensch,
- 3. Mischprobe aus der Auffüllung der RKS: LAGA TR Boden (2004) für die abfallrechtliche Zuordnung des Bodens.

2.3 Vorhandene Gutachten

Sind dem Gutachter keine bekannt, jedoch gibt es Voruntersuchen, deren Ergebnisse in den von der Unteren Bodenschutzbehörde des LK Nordwestmecklenburg vorgegebenen Untersuchungsumfang für die aktuell durchgeführte ergänzende Altlastenuntersuchung eingeflossen sind [U3.].

2.4 Geographische Lage

Der Untersuchungsraum befindet sich südöstlich der Ortslage von Tüzen. Die Fläche grenzt im Norden an ein mit einer großen Scheune bebautes Grundstück (Flurstück 59); ansonsten befinden sich im Umkreis der Fläche landwirtschaftliche Nutzflächen bzw. mit Gehölzen bewachsene Flächen mit gartenähnlichem Charakter.

Die Morphologie des Untersuchungsraumes ist hügelig geprägt. Das Gelände ist relativ steil, das Höhenniveau erstreckt sich von 96,00 m HN, relativ steil abfallend - nach Norden bis auf ca. 91,30 m HN und nach Osten auf 88,62 m HN. Nach Süden ist es nur geringfügig abfallend auf ca. 94,99 m HN und nach Westen verharrt es in etwa auf gleichem Niveau.

2.5 Geologische Einordnung des Standortes

Das Gebiet um Tüzen ist geprägt von pleistozänen Beckenablagerungen des Weichselhochglazials (Pommersches Stadium der Weichselkaltzeit). Die obere Schicht besteht vorwiegend aus Geschiebemergel der Hochflächen bzw. aus Schmelzwasserablagerungen der Rinnen und Eisspalten und im Bereich von Randlagen (Geologische Karte MV, GK 50 [U2.].

Der Untersuchungsraum befindet sich nicht in einem unmittelbaren Hochwassereinzugsbereich. Die Geländehöhe beträgt im Mittel 90 m üHNH.

2.6 Hydro- und hydrogeologische Einordnung des Standortes

Der Untersuchungsraum befindet sich nicht in einer Wasserschutzzone. Der Geschütztheitsgrad des Grundwassers wird als "hoch" eingestuft, d.h. die Mächtigkeit bindiger Deckschichten beträgt > 10 m [U1.]. Die Grundwasserüberdeckung erfolgt mit weichselzeitlichem Geschiebemergel.

Die Grundwasserfließrichtung, der Grundwasserflurabstand und die Geschütztheit des I. abgedeckten Grundwasserleiters sind in der Abbildung 6 dargestellt.

Das Grundwasser fließt in westliche Richtung und hat im Bereich des Untersuchungsraumes einen mittleren Wasserstand von > 10,0 m. Die Angabe des Wasserstandes kann nur als ungefähre Näherung, jedoch nicht für die Bemessung von Bauwerken oder Ähnlichem verwendet werden.

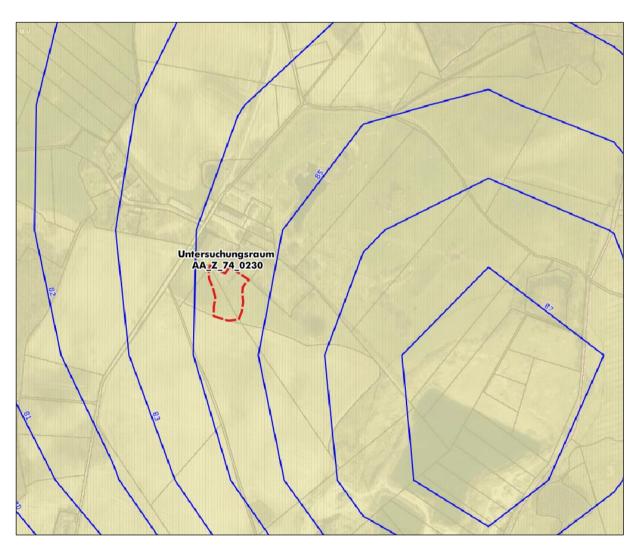


Abbildung 6 Abbildung Grundwasserflurabstand, -überdeckung, -fließrichtung

Die Wasserschutzgebietszone III des Wasserschutzgebietes "Warnow-Rostock" befindet sich in einer Entfernung von ca. 300 m in östliche Richtung. In ca. 3 km Entfernung nach Norden liegt die Wasserschutzzone IV "Krempin". Die aus den großmaßstäbigen Daten erkennbare

Grundwasserfließrichtung verläuft in westliche Richtung und damit nicht in Richtung der Trinkwasserschutzzonen.

In ca. 300 m Entfernung in südwestlicher Richtung befindet sich ein Gewässer II. Ordnung des Wasser- und Bodenverbandes "Hellbach – Conventer Niederung" – 12:17/3 W.

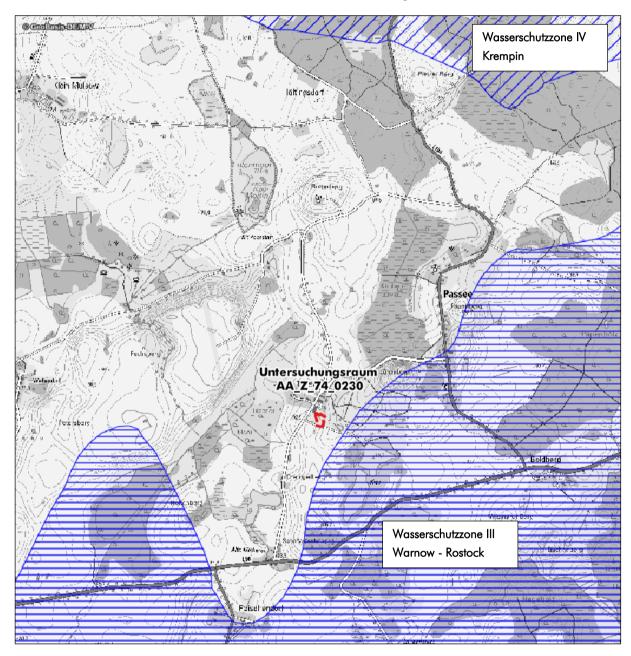


Abbildung 7 Abbildung Wasserschutzzonen

2.7 Bewertung der Schutzwürdigkeit des Bodens

Bei der Darstellung der Bodenfunktionsbereiche wurde in der Gesamtstellungnahme des LK Nordwestmecklenburg [U3.] zum Schutzgut Boden auf den Umweltbericht -FB07- des B-Planvorentwurfes verwiesen, der "Lehme/Tieflehme grundwasserbestimmt und/ oder staunaß, > 40 % hydromorph und erhöhte bis allgemeine Schutzwürdigkeit" konstatiert.

Auf Grund der festgestellten anthropogenen Beeinträchtigungen durch die vorgenommenen Ablagerungen kann dieser, an Hand großmaßstäbiger Daten gegebene Hinweis auf Grundlage der nun vorliegenden Untersuchungen kleinmaßstäbig nicht bestätigt werden. Die vorhandenen Böden sind überwiegend als oberhalb der Grubenverfüllung aufgeschüttete Böden zu bezeichnen, die wesentliche wertvolle Eigenschaften wie ein hoher Humusgehalt oder besondere wasserhaushaltende Eigenschaften nicht aufweisen. Hierzu wird ergänzend auf die Untersuchungsergebnisse im Kapitel [3.2] verwiesen.

2.8 Im Rahmen der aktuellen Untersuchungen durchgeführte Flächenbeprobung

Die Probenahme vor Ort erfolgte am 07.11.2022 nach dem im Kapitel 2.2.2 aufgestellten Untersuchungsprogramm mittels Flächenbeprobung mit dem Eijkelkamp-Bohrer in einem Z-förmig angelegten Raster an 20 Einstichstellen in der Teufenlage 0,00 – 0,35 m u. GOK (unter Geländeoberkante).

Weiterhin wurden die 11 Rammkernsondierungen am 07.11.2022 begonnen und am 08.11.2022 beendet. Dabei kam es an mehreren Stellen zu sogenannten Fehlbohrungen, die aufgrund von massiven Bohrhindernissen zum Abbruch der Bohrarbeiten führten. Das war insbesondere im Umfeld der dann erfolgreich abgeteuften RKS 3, 8, 9, 10 der Fall. Insgesamt kam es zu 16 m Fehlbohrungen.

Abbildung 8 Beprobte Fläche im Z-Raster, RKS 1 - 11 [U1.]

Die durchgeführten Bodenprobenahmen sind im Prüfbericht der Anlage 1 beschrieben.

Die einzelnen Probenahmen sind im Untersuchungsraum wie folgt zuzuordnen:

Tabelle 1: Zuordnung der Boden-Probenahme zur Fläche

Probennummern	Entnahmestelle	Entnahmebereich (m u. GOK)
KJ-07-11-22-01	Fläche des Untersuchungsraumes	anstehender Oberboden als spätere
		Nutzungsebene/
		0,00 – 0,35
KJ-07-11-22-02	RKS 1 – 11	anstehender Boden unterhalb der
		Auffüllung= Liegendes/
		Endteufen: ca. 2,20 – max. 9,20
KJ-08-11-22-01	RKS 1 - 11	Auffüllung/
		ca. 0,35 bis max. 9,20

2.9 Chemische Laboruntersuchungen

Die Bodenproben wurden in durch das akkreditierte Labor Eurofins Umwelt Nord GmbH bereitgestellte Probenahmegefäße verpackt und am 07.11. bzw. am 08.11.2022 zur Durchführung der Analytik übergeben.

Die im Einzelnen durchgeführten Untersuchungen sind im Kapitel 3.2.1 ab der Seite 14 beschrieben und begründet.

3. Untersuchungsergebnisse

3.1 Geotechnische Ergebnisse

Die Untersuchungen wurden am 07.11. und 08.11.2022 mittels Rammkernsondierungen geführt. Dabei wurde bei den bis in eine max. Teufe von 9,2 m u. GOK abgeteuften Rammkernsondierungen temporär kein Grundwasserspiegel ermittelt.

Tabelle 2: Erreichte Endteufen der RKS

RKS	Rechtswert	Hochwert	Erreichte Endteufe
			(m u. GOK)
1/22	33287091,24	5982231,01	4,20
2/22	33287080,49	5982233,66	3,20
3/22	33287100,13	5982228,4	9,20
4/22	33287126,85	5982220,35	7,20
5/22	33287141,39	5982215,22	3,20
6/22	33287094,16	5982216,43	7,20
7/22	33287088,75	5982204,8	3,20
8/22	33287122,09	5982265,43	3,00
9/22	33287114,01	5982251,7	6,20
10/22	33287130,98	5982280,42	2,00
11/22	33287155,03	5982212,24	2,20
Summe RKS			50,80 m
Summe Fehlbohrungen			16,00 m

Insgesamt wurden 66,80 m Rammkernsondierungen durchgeführt.

Die Mächtigkeit der Auffüllung ist detailliert aus dem der Anlage 1 beigefügten Prüfbericht HSW/08112022/PS01 und den darin enthaltenen Bohrprofilen zu entnehmen.

An den einzelnen Untersuchungspunkten wurden die, in folgender Tabelle zusammengefassten, Böden angesprochen.

Tabelle 3 Typusprofil des Standortes

Nr.	Schicht (Beschreibung)	Lagerung bzw. Konsistenz			Lieger	ndgrenze [m	u GOK]		
			RKS 1/22 // 2/22	RKS 3/22 // 4/22 // 9/22	RKS 5/22 // 10/22	RKS 6/22	RKS 7/22	RKS 8/22	RKS 11/22
0.1	Auffüllung Sand, Schluff, tlw. Bauschutt, Beton	dicht	2,4 // 0,7	8,4 // 6,4 // 4,7	3,0 // 0,95	5,9		1,5	0,70
1.	Sand	mitteldicht bis dicht		9,2 // 7,2 // 6,2		6,1	2,2	3,0	1,70
2.	Schluff, stark tonig	weich					1,7 und 3,2		2,0
3.	Geschiebe- mergel	halbfest	4,2 // 3,2						
4.	Geschiebelehm	halbfest			3,2 // 2,0	7,2			2,2
	Auffälligkeit/ Grund		Erkundun	Erkundung Mächtigkeit der Auffüllungen					

Erkennbar war die erwartete, weitgehend anthropogene Vorprägung des aufgefüllten Bodens.

3.2 Analytische Ergebnisse

3.2.1 Altlastenrelevanz

Die Ergebnisse der chemischen Analytik sind diesem Gutachten in Form der Laborberichte in der Anlage 2 beigefügt.

In der Anlage 3.1 wurden für die spätere Nutzungsebene diese Ergebnisse auf der Basis der BBodSchV hinsichtlich der Prüfwerte nach Anhang 2, Nr. 1.4 für den Direktkontakt hinsichtlich des Wirkungspfades

 Boden - Mensch (Kinderspielflächen, Wohnen, Park- und Freizeitanlagen sowie Industrie- und Gewerbegrundstücke)

aus gutachterlicher Sicht bewertet.

In der Anlage 3.2 wurde für die vorhandene Auffüllung die Vorsorgewerte für Böden- Metalle und organische Stoffe- dargestellt und beurteilt.

3.3 Wirkungspfad Boden – Mensch

3.3.1 Wirkungspfad Boden – Mensch – Prüfwerte

Bei der Beurteilung des Wirkungspfades Boden – Mensch liegt das Augenmerk unter Bezugnahme auf die im Kapitel 2.2.1 vermutete mögliche Nutzbarkeit des Grundstücks auf der vorsorglich vorausgesetzten Nutzung des Untersuchungsraumes als Ferienpark mit temporärer Wohnnutzung/Kinderspielflächen sowie Park- und Freizeitanlagen. Hier wird auf den Erlass zur "Bewertung der PAK bezüglich des Wirkungspfades Boden – Mensch" des Ministeriums für Landwirtschaft und Umwelt M-V von 2017 verwiesen, der die Einhaltung von folgenden Grenzwerten auf altlastenverdächtigen Flächen und Verdachtsflächen empfiehlt und die mit der Einführung der neuen BBodSchV ab 01.08.2023 verordnet sein werden.

Die geplante Nutzung wurde durch die Untere Bodenschutzbehörde des Landkreises Nordwestmecklenburg der Nutzung "Park- und Freizeitanlagen" zugeordnet; diese Zuordnung ist auch nach Einschätzung des Gutachters die hier Zutreffende.

Tabelle 4: Empfohlene Prüfwerte Benzo(a)pyren für M-V (mg/kg TS)

Kinderspielfläc	hen Wohngebiet	Park- und Freizeitanlagen	Industrie- und Gewerbegebiete
0,5	1,0	1,0	5,0

In Auswertung der Analyseergebnisse sind für die untersuchten Parameter die folgenden Sachverhalte zu konstatieren:

- Teufenbereich Auffüllung 0,00 0,35 m u. GOK: keine Überschreitung des Prüfwertes für die Nutzungsart Kinderspielflächen, damit werden auch die Prüfwerte für die hier aus bodenschutzrechtlicher Sicht anzusetzende relevante Nutzung Park- und Freizeitanlagen eingehalten, siehe hierzu in der Anlage 3.1.
- Liegendes aus der Endteufe bei max. 9,20 m u. GOK: keine Überschreitung des Prüfwertes für die Nutzungsart Kinderspielflächen, siehe hierzu in der Anlage 3.1.
- Auffüllung Teufenbereich von 0,35 bis max. 9,20 m u. GOK: Überschreitung des Prüfwertes für den Parameter Benzo(a)pyren mit einem Wert von 2,4 mg/kg TS, somit ist eine Nutzung als Kinderspielfläche nicht zulässig; Nutzungsart Wohngebiete bzw. Park- und Freizeitanlagen sind zulässig.

3.3.2 Beurteilung der Auffüllung nach den Vorsorgewerten für Böden

Die an der Probe KJ-08-11-22-01 durchgeführten Untersuchungen bestätigten grundsätzlich das Vorhandensein schädlicher Bodenveränderungen, welche mit folgenden Analyseergebnissen belegt wurden:

Vorsorgewerte für Metalle, Bodenart Sand: Auffüllung Teufenbereich von 0,35 m bis max.
 9,20 m u. GOK: Überschreitung der Vorsorgewerte beim Parameter Zink mit 172 mg/ kg
 TS; der zulässige Vorsorgewert liegt bei 60 mg/ kg

- Vorsorgewerte f
 ür organische Stoffe, Humusgehalt ≤ 8 %:
 - O Auffüllung Teufenbereich von 0,35 m bis max. 9,20 m u. GOK: Überschreitung des Vorsorgewertes für Benzo(a)pyren mit 2,4 mg/ kg TS; der zulässige Vorsorgewert liegt bei 0,3 mg/kg TS. Der Summenparameter PAK₁₆ überschreitet hier den zulässigen Wert von 3,0 mg/ kg TS mit den analysierten 33,5 mg/kg TS jedoch erheblich.
 - o Im Teufenbereich des Liegenden wurden Überschreitungen des Vorsorgewertes für den Summenparameter PAK₁₆ festgestellt: der analysierte Wert von 3,3 mg/kg TS überschreitet den zulässigen Wert von 3,0 mg/kg TS jedoch nur geringfügig.
 - Ob die diese schädlichen Bodenveränderungen nach außen wirksam werden, wird in den Schlussfolgerungen in Kapitel 5 ab Seite 17 nochmals diskutiert.
- Die Summe der PCB (6 Werte) wird in keiner der Teufenlagen überschritten.

3.3.3 Wirkungspfad Boden – Grundwasser – Geringfügigkeitsschwellenwerte gemäß LAWA

Bei der Probe KJ-08-11-22-01 (Auffüllung Teufenbereich von 0,35 bis max. 9,20 m u. GOK) wurde aufgrund der Überschreitung des PAK₁₆-Wertes im Feststoff ergänzend der PAK₁₆-Parameter im Eluat analysiert. Die PAK₁₅–Konzentration wurde mit 0,86 μg/l analysiert.

Nach der hier anzuwendenden Richtlinie der "Länderarbeitsgemeinschaft Wasser- Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser" (LAWA) liegt der Prüfwert für PAK₁₅ bei 0,2 μ g/l. Dieser Prüfwert wurde somit um mehr als das 4-fache überschritten.

Auswertung nach abfallrechtlichen Belangen – LAGA TR Boden (2003)

Bei der hinsichtlich der abfallrechtlichen Belange untersuchten Probe KJ-08-11-22-01 nach der LAGA – Technischen Regeln für die Verwertung - 1.2 Bodenmaterial und sonstige mineralische Abfälle (LAGA-Boden 2004) wurde für die Auffüllung im Teufenbereich von 0,35 bis max. 9,20 m u. GOK das Material als >Z2 analysiert. Der limitierende Parameter ist die Summe der PAK₁₆– Werte im Feststoff, es wurde ein Wert von 33,5 mg/kg TS ermittelt.

Das bedeutet, dass die vorhandene Auffüllung im Ergebnis der analysierten Mischprobe aus dem Bohrgut aller Bohrungen eine Schadstoffbelastung aufweist, die deren weitere Verwertung in der vorliegenden Form ausschließt. Sie ist damit der weiteren Nutzung durch Menschen zu entziehen. Die Auffüllung ist daher grundsätzlich der Entsorgung durch Beseitigung auf einer dafür zugelassen Deponie oder der Bodenbehandlung durch eine dafür zugelassene Anlage zuzuführen. Dies ist grundsätzlich bei der Durchführung von Baumaßnahmen zu beachten, die den Aushub dieser Böden beinhalten.

Die vorstehenden Hinweise sind insofern einzuschränken, als dass die gewonnene Mischprobe den Durchschnitt der Stoffgehalte aller darin eingegangenen Einzelproben abbildet. So werden in dem inhomogenen Abfallgemisch, welches als Auffüllung eingebaut worden ist, geringere, aber auch höhere PAK₁₆–Stoffkonzentrationen anzutreffen sein. Dies stellt an dessen Deklaration während der Bauausführung spezielle Anforderungen, die im Folgenden Kapitel erläutert werden.

5. Vorschläge zum weiteren Vorgehen

Im Boden wurden im erkundeten, unterschiedlich mächtigen Auffüllungshorizont flächig vorhandene anthropogene Bodenbelastungen gefunden, die aus gutachterlicher Sicht das Vorhandensein schädlicher Bodenveränderungen aus Vorsorgegesichtspunkten belegen. Diese sind ursächlich in der Vergrabung von Abfällen zu begründen.

Für die Einschätzung der Auswirkung schädlicher Bodenveränderungen sind sogenannte Wirkungspfade definiert, welche nutzungsbezogen betrachtet werden. Im Ergebnis ist festzustellen, dass der Wirkungspfad Boden – Mensch, Nutzung Kinderspielplätze, in der Teufenlage 0,00 bis 0,35 m u. GOK und im Liegenden des Untersuchungsraumes nicht eröffnet wird.

Dies trifft für die hier anzuwendende Nutzung Park- und Freizeitanlagen auch für die darunter befindliche Auffüllung zu. Für diese Auffüllung wird jedoch aus sozialhygienischer Sicht und unter Einbeziehung des Kapitels 0 aus gutachterlicher Sicht empfohlen, die darin vorhandenen Abfälle sicher mit einer mindestens 30 cm mächtigen Schicht aus unbelasteten Böden zu überdecken, so dass der direkte Kontakt ausgeschlossen wird. Bei Erdarbeiten, etwa für die Verlegung von Kabeln oder Leitungen oder die Veränderung der Topografie, ist sicherzustellen, dass diese Abfälle nicht mit den darüber vorhandenen Böden oder unbelasteten Lieferböden vermischt werden. Aushub aus diesen Teufenbereichen ist daher stets getrennt zu halten, in Haufwerken aufzuhalden und vor der Entsorgung abfalldeklarierend beproben und analysieren zu lassen. Erst danach ist dessen Entsorgung möglich und zulässig. Querkontaminationen im Bereich der Zwischenlagerflächen sind wirksam zu unterbinden.

Für die in der Auffüllung analysierten PAK₁₆–Belastungen und deren Beurteilung nach der "Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser (2016)" sollten aus gutachterlicher Sicht die folgenden Überlegungen in die abschließende Bewertung einbezogen werden.

Zieht man für eine weitere Beurteilung auch die Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden der LAWA (1994) heran, so ist zu erkennen, dass sich die analysierte PAK₁₅ – Konzentration im Maßnahmewertbereich befindet (0,4 – 2,0 μg/l). Aus gutachterlicher Sicht erscheint die Einleitung weiterer Maßnahmen zur Vermeidung einer Grundwasserbeeinträchtigung jedoch aus den folgenden Gründen als nicht zwingend erforderlich:

- 1. Während den Untersuchungsarbeiten ist kein Grundwasser angetroffen worden. Die hydrogeologischen Rahmenbedingungen weisen das anstehende Grundwasser als gut geschützt aus (siehe dazu im Kapitel 2.6).
- 2. Die im Liegenden analysierte PAK₁₆ Feststoffkonzentration ist möglicherweise in Folge der langen Bohrstrecken und der dabei, auch in Folge der starken Verunreinigung der Auffüllung mit Baustoffen, nicht auszuschließenden Querkontamination zu hoch analysiert worden. Auf diesen Sachverhalt sollte bei der Beurteilung geachtet werden.
- 3. Im Liegenden wurden überwiegend bindige Substrate angesprochen; noch vorhandene nichtbindige Substrate stellen nach Einschätzung des Gutachters Reste nicht ausgebeuteter

Rohstoffe dar, die in tieferen Lagen ebenfalls mit bindigen Substraten unterlagert sein dürften. Daher wird aus gutachterlicher Sicht - etwa in das Liegende eintretende PAK₁₆ – Konzentrationen - keine weite Ausbreitungsmöglichkeit zuerkannt.

4. Abschließend sei darauf verwiesen, dass die analysierte PAK₁₅ – Konzentration aus dem Bodenfeststoff eluiert wurde. Das dabei eingesetzte Verfahren dient der maximalen Freisetzung des Schadstoffes, die dabei eingesetzten Verfahren können in der Natur so nicht vorausgesetzt werden. Insofern ist am Standort auch mit geringen Freisetzungsraten zu rechnen. Die dies weiter untersetzenden Grundwasseruntersuchungen können hier nicht durchgeführt werden, da kein Grundwasser angetroffen wurde.

Zusammenfassend wird im Hinblick auf die analysierten PAK₁₆-Belastungen in der Auffüllung von einer, unter den gegebenen Rahmenbedingungen, sicherungsähnlichen Situation ausgegangen, die die Notwendigkeit von weiteren kostenaufwendigen Maßnahmen (Sanierung durch Dekontamination) fragwürdig erscheinen lassen.

Grundsätzlich wird empfohlen, die Durchführung von Erdarbeiten auf dem Grundstück durch einen abfall- und altlastensachverständigen Sonderfachmann begleiten zu lassen.

bearbeitet:

Katrin Jesch-Steinig

Beratende Ingenieurin

geprüft:

Dipl.-Ing.
Peter Steinig

-B-1060-98
Berntender
Ing.

ppa. Peter Steinig

Beratender Ingenieur

6. Anlagen

Anlage 1: Prüfbericht HSW/07112022-PS01

Prüfbericht HSW/08112022-PS02

Anlage 2: Prüfberichte Laboranalytik Boden

AR-22-NK-008184-01 AR-22-NK-008185-01 AR-22-NK-008202-01

Anlage 3: tabellarische Auswertung der vorliegenden Analyseergebnisse auf der Grundlage der A3 Analyseergebnisse

- o 3.1 BBodSchV, Prüfwerte, Wirkungspfad Boden Mensch, Beurteilungswerte nach Anhang 2, Tab. 1.4
- o 3.2 BBodSchV, Vorsorgewerte für Böden, Tab. 4.1 und 4.2
- o 3.3 Auswertung nach der LAGA

Anlage 4: Lageplan mit Auswertung der Untersuchungsergebnisse

7. Quellenverzeichnis

- [U1.] Kartenportal Umwelt Mecklenburg-Vorpommern, LUNG Güstrow, Stand 2022
- [U2.] GAIA M-V, Landesamt für Innere Verwaltung, Schwerin, Stand 2022
- [U3.] Gesamtstellungnahme LK NWM zum B-Planverfahren, 07.10.2022
- [U4.] Bestätigung Untersuchungsumfang der ergänzenden Altlastenuntersuchung LK NWM, 03.11.2022
- [U5.] Vorentwurf zum B-Plan Nr. 6 der Gemeinde Passee "Ferienpark Gutsanlage Tüzen", ign Melzer & Voigtländer, Juni 2022

8. Literaturverzeichnis

- BMU. (17. 03 1998). Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz BBodSchG). Bundes-Bodenschutzgesetz BBodSchG. Berlin.
- BMU. (12. 07 1999). BUNDESBODENSSCHUTZ UND ALTLASTENVERORDNUNG (BBODSCHV). ZULETZT GEÄNDERT DURCH ART. 5 ABS. 31 G v. 24.02.2012. BERLIN.
- LAGA. (2004). Länderarbeitsgemeinschaft Boden, Anforderungen an die stoffliche Verwertung von mineralischen Abfällen
- LAWA. (1993). Länderarbeitsgemeinschaft Wasser, Geringfügigkeitsschwellenwerte für Grundwasser
- LUNG. (2006). Leitfaden zur Altlastenbearbeitung in Mecklenburg-Vorpommern. Güstrow: Landesamt für Umwelt, Naturschutz und Geologie M-V (LUNG).
- MLU. (2017). BEWERTUNG VON PAK BEZÜGLICH DES WIRKUNGSPFADES BODEN MENSCH, SCHWERIN, MINISTERIUM FÜR LANDWIRTSCHAFT UND UMWELT MV

Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20

e-mail: info@hsw-rostock.de LAGA-Richtlinie PN 98 (2001-12)

Seite 1 von 19

Prüfbericht -Nr. : H.S.W./07112022-PS01

Prüfbericht vom :07.11.2022

Objekt /Auftrag : Deklarationsanalytik

BV Tüzen, B-Plan Nr. 6 "Ferienpark Gutsanlage

Tüzen"

Prüfgegenstand : Boden

Probenahmeverfahren : IAGA-RI PN 98

<u>Auftraggeber:</u>

VAUWERK GmbH Strandstraße 96 18055 Rostock

Auftragnehmer:

Tel. 0381/252898-0, Fax 0381/252898-10

E-mail: info@hsw-rostock.de www.hsw-rostock.de

: 02.11.2022

Auftragseingang Probenahme am : 07.11.2022

Bemerkungen

Probenübergabe an

akkreditiertes Labor : Eurofins Umwelt Nord GmbH

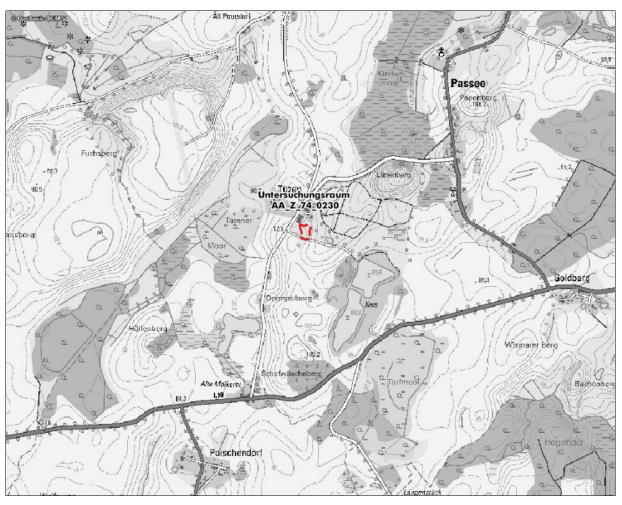
Übergabe am : 07.11.2022 : Seite 4 – 8 Probenahmeprotokolle

: Seite 9 - 19 Bohrprofile

Prüfberichtzeichnungsberechtigter : ppa. Dipl.-Ing. P. Steinig

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

Do	kumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN	-PNF01-Bodenprobe.doc	1	0	01.07.2011			


Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20 e-mail: <u>info@hsw-rostock.de</u>

LAGA-Richtlinie PN 98 (2001-12)

Übersichtslageplan

Quelle: QGIS/ H.S.W.

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20

e-mail: <u>info@hsw-rostock.de</u> LAGA-Richtlinie PN 98 (2001-12)

Protokoll über die Entnahme einer Bodenprobe

Probenehmer/Dienststelle:		nd der Probenahme:
H.S.W. Ingenieurbüro	Gemeinde Passee,	OT Tüzen
Gesellschaft für Energie und Umwelt mbH	B- Plan Nr. 6 "Feri	enpark Gutsanlage Tüzen"
Gerhart-Hauptmann-Str. 19		
18055 Rostock		
Projektnummer:	Veranlasser:	
2022/41/678	VAUWERK GmbH	
	Strandstraße 95	
	18055 Rostock	
Probenahmestelle:		
Gemeinde: Passee	Ort: Tüzen	Landkreis: Nordwestmecklenburg
Betrieb:		

Flurstück/Topografische Karte:	Rechtswert ca.:	Hochwert ca.:
EPSG-Code 5653	33287104,19 (Mitte der Untersu-	5982249,56 (Mitte der Untersu-
	chungsfläche)	chungsfläche)

Art des Bodens : Aufschüttung

Probenahmetag/ Probenahmeuhrzeit : 07.11.2022, 8:00 – 10:00 Uhr

Probenbezeichnung/-nummer : KJ-07-11-22-01

Vermutete Schadstoffe/ Gefährdungen : BBodSchV, Prüfwerte, Wirkungspfad Boden - Mensch

Entnahmegerät : Eijkelkamp-Nutlanze

Herkunft des Bodens : Untersuchungsfläche Z-Beprobung

Einzel- oder Mischprobe : MP

bei Mischprobe Zahl der Einzelproben : 36

Entnahmedaten:

Art der Lagerung (z.B. bei Bo- denhalden / Menge des beprob- ten Abfalls)	Aufschüttung	Einflüsse auf den Boden	Witterung
Entnahmetiefe (m)	0,0 bis 0,35	Lagerungsdauer	mehrere Jahre
Farbe	schwarz-braun	Vergleichsproben	-
Geruch	erdig	Ergebnis Voruntersuchung	-
Festigkeit / Konsistenz	dicht	Probenkonservierung	ohne
Homogenität	0 % min. FS 0 % nichtmin. FS	Art des Probegefäßes Verschluss	Kunststoffeimer
Kornzusammensetzung/ -größe	S, U	Probemenge	1 1

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH Gerhart-Hauptmann-Str. 19

D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20 e-mail: info@hsw-rostock.de LAGA-Richtlinie PN 98 (2001-12)

Lageskizze (unmaßstäblich)		
Grundlage der Darstellung: Einmessung mit Bandmaß 🔲 La	rser M GPS M Roll	rad 🗆 Nivelliergerät 🗆
	rsei 🖂 Ol 2 🔲 Koli	dd 🗀 Mwelliergerdf 🗀
Foto:		
Foto 1: Blick über das Untersuc	hungsgebiet	
Schichtenprofil:		
ohne		
Beobachtungen/Bemerkungen	: _	
Zeugen	_	Jonas Korff (H.S.W.)
200g011	_	
Zur Untersuchung gegeben:	am: 07.11.202	2 Uhrzeit: ~ 16:30 Uhr
Ort:	Probenehmer:	Unterschrift:
Rostock	Karsten Janße	n W. Jh
Die Prüfergebnisse beziehen sich auss Eine auszugsweise Vervielfältigung de	schließlich auf den Prüf s Prüfberichtes ist nicht	gegenstand. gestattet. ProjektINT. 2U22/41/678

Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20

e-mail: <u>info@hsw-rostock.de</u> LAGA-Richtlinie PN 98 (2001-12)

Protokoll über die Entnahme einer Bodenprobe

Probenehmer/Dienststelle: H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH Gerhart-Hauptmann-Str. 19 18055 Rostock	Gemeinde Passee	und der Probenahme: e, OT Tüzen rienpark Gutsanlage Tüzen"
Projektnummer: 2022/41/678	Veranlasser: VAUWERK GmbH Strandstraße 95 18055 Rostock	ł
Probenahmestelle: Gemeinde: Passee Betrieb:	Ort: Tüzen	Landkreis: Nordwestmecklenburg

Flurstück/Topografische Karte:	Rechtswert ca.:	Hochwert ca.:
EPSG-Code 5653	siehe Seite 2	siehe Seite 2

Art des Bodens : Boden

Probenahmetag/ Probenahmeuhrzeit : 07.11.2022, 8:00 – 15:00 Uhr

Probenbezeichnung/-nummer : KJ-07-11-22-02

Vermutete Schadstoffe/ Gefährdungen : BBodSchV, Prüfwerte, Wirkungspfad Boden - Mensch

Entnahmegerät : Rammkernsonde (RKS)

Herkunft des Bodens : RKS 1-11

Einzel- oder Mischprobe : MP

bei Mischprobe Zahl der Einzelproben : 11

Entnahmedaten:

Art der Lagerung (z.B. bei Bo- denhalden / Menge des beprob- ten Abfalls)	Boden	Einflüsse auf den Boden	ehemalige Deponie
Entnahmetiefe (m)	jeweils aus dem Lie- genden der RKS	Lagerungsdauer	-
Farbe	grau	Vergleichsproben	-
Geruch	erdig	Ergebnis Voruntersuchung	-
Festigkeit / Konsistenz	halbfest	Probenkonservierung	ohne
Homogenität	0 % min. FS 0 % nichtmin. FS	Art des Probegefäßes Verschluss	Eimer
Kornzusammensetzung/ -größe	S, U	Probemenge	1

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20 e-mail: info@hsw-rostock.de LAGA-Richtlinie PN 98 (2001-12)

Lageskizze (unmaßstäblich)
Grundlage der Darstellung:
Einmessung mit Bandmaß 🗌 Laser 🔲 GPS 🔀 Rollrad 🔲 Nivelliergerät 🗌
Foto:
<u>1010</u> .

Foto 1: Beispiel PN- Stellen RKS

Schichtenprofil: siehe ab Seite 9

Koordinaten:

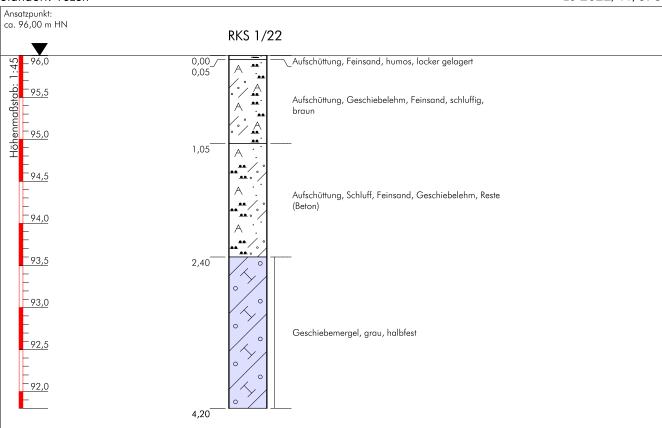
RKS	Rechtswert	Hochwert
1	33287091,24	5982231,01
2	33287080,49	5982233,66
3	33287100,13	5982228,4
4	33287126,85	5982220,35
5	33287141,39	5982215,22
6	33287094,16	5982216,43
7	33287088,75	5982204,8
8	33287122,09	5982265,43
9	33287114,01	5982251,7
10	33287130,98	5982280,42
11	33287155,03	5982212,24

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

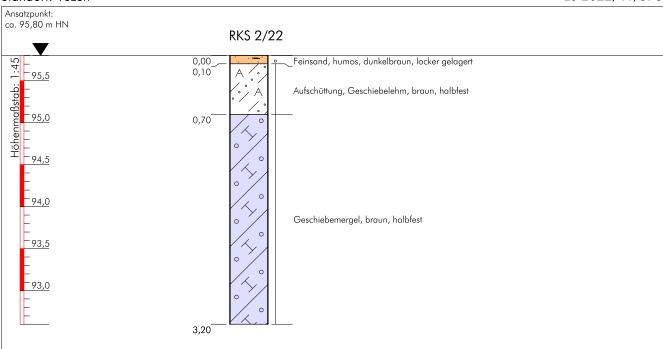
Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

Gerhart-Hauptmann-Str. 19 D-18055 Rostock

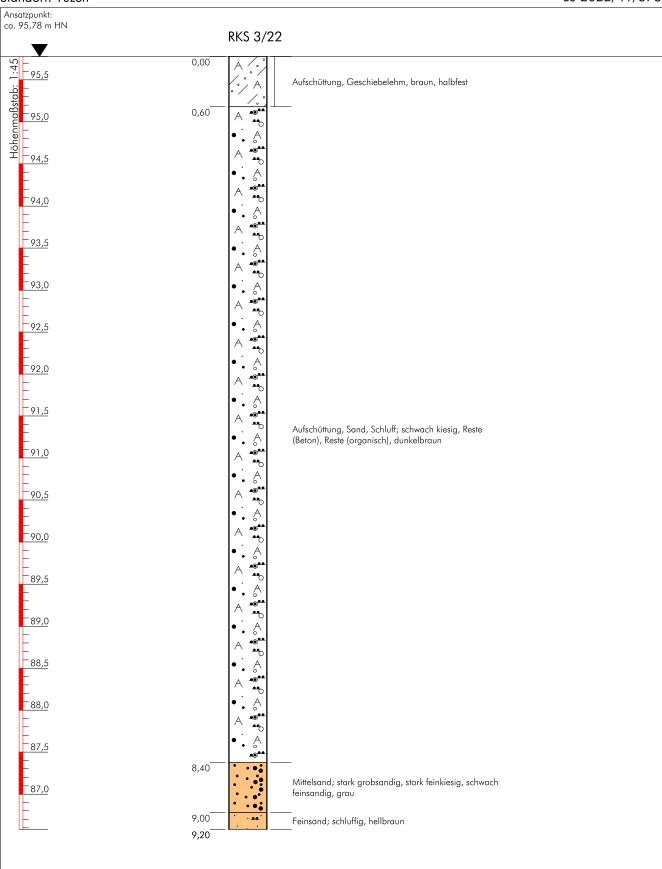
Tel. 0381-252898 0 / Fax 0381-252898 20 e-mail: <u>info@hsw-rostock.de</u>

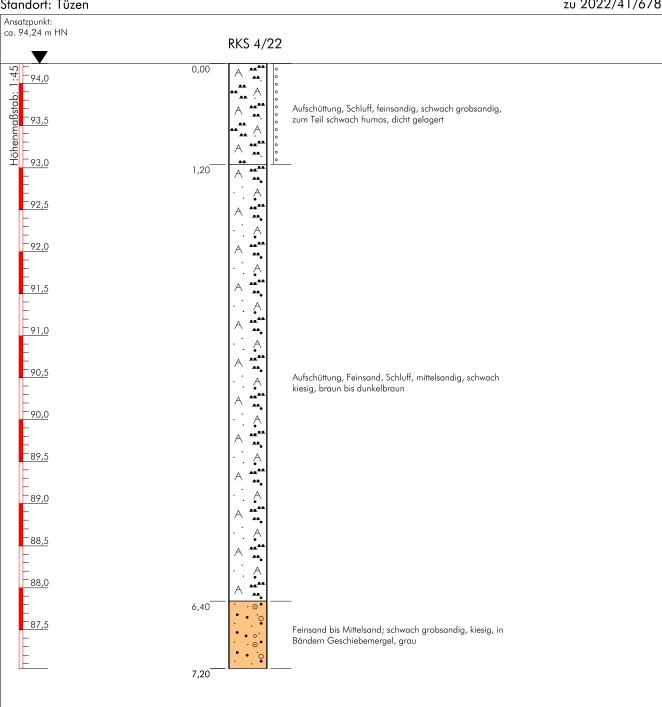

LAGA-Richtlinie PN 98 (2001-12)

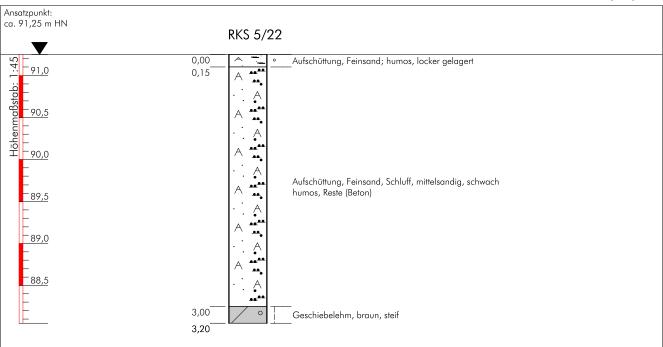
Beobachtungen/Bemerkungen		Mischprobe aus dem Liegenden der jeweilig erreichten Endteufen der RKS 1 - 11			
Zeugen	Marcus	s Randow (H.S.W.)			
Zur Untersuchung gegeben:	am: 07.11.2022	Uhrzeit: ~ 16:30 Uhr			
Ort:	Probenehmer:	Unterschrift:			
Rostock	Karsten Janßen	h. 46-			

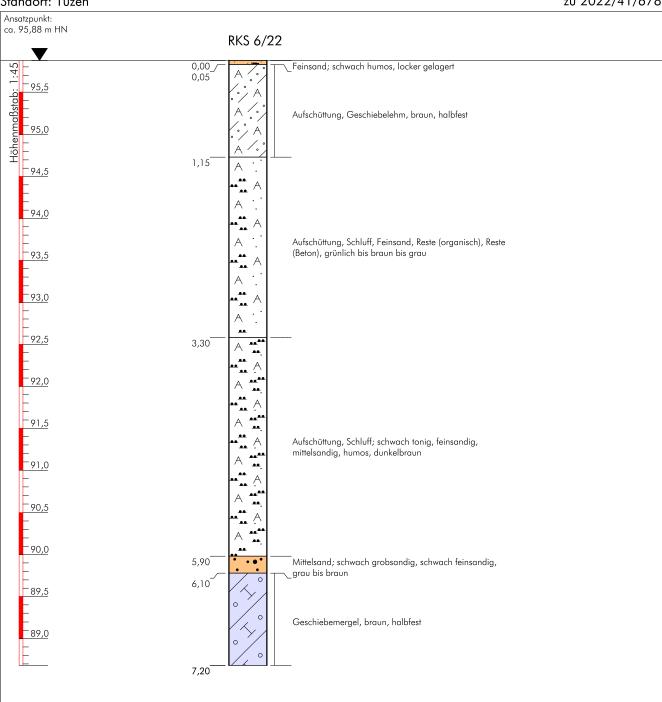

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

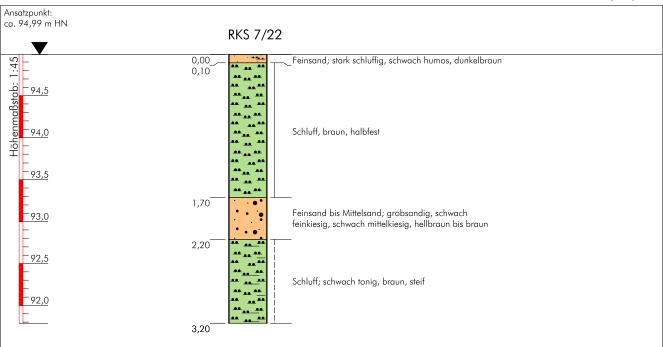
Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

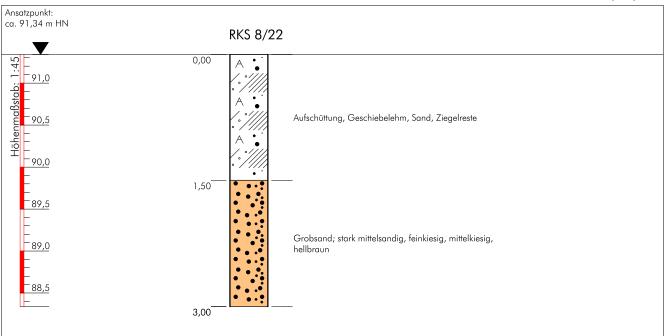

Projekt:	"Ferienpark Gutsanlage Tüzen"			
Bohrung:	RKS 1/22 (2036-678-RKS01-11/022)			
Auftraggebe	r: VAUWERK GmbH	Rechtswert:	33287091	(ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982231	(ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:		96,00 m
Datum:	07.11.2022	Endteufe:		4,20 m

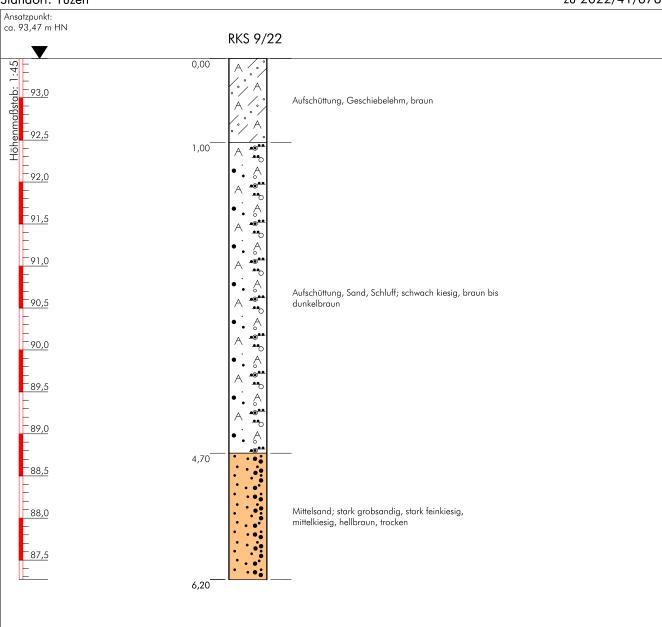

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 2/22 (2036-678-RKS02-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287080 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982234 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	95,80 m
Datum:	07.11.2022	Endteufe:	3,20 m

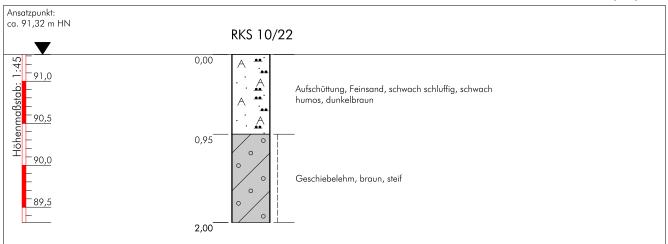

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 3/22 (2036-678-RKS03-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287100 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982228 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	95,78 m
Datum:	07.11.2022	Endteufe:	9,20 m

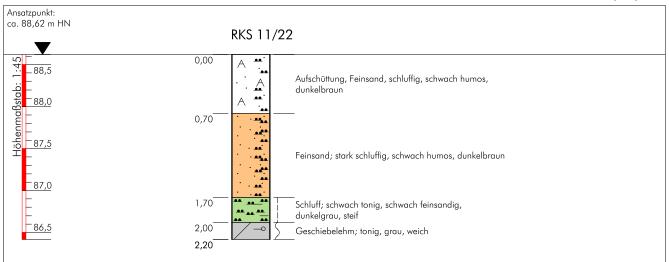

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 4/22 (2036-678-RKS04-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287127 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982220 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	94,24 m
Datum:	07.11.2022	Endteufe:	7,20 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 5/22 (2036-678-RKS05-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287141 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982215 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	91,25 m
Datum:	07.11.2022	Endteufe:	3,20 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
· ·	RKS 6/22 (2036-678-RKS06-11/022)		
Bohrung:	KNS 0/22 (2030-0/0-KNSU0-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287094 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982216 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	95,88 m
Datum:	07.11.2022	Endteufe:	7,20 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 7/22 (2036-678-RKS07-11/022)		
Auftraggeber	r: VAUWERK GmbH	Rechtswert:	33287089 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982205 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	94,99 m
Datum:	07.11.2022	Endteufe:	3,20 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 8/22 (2036-678-RKS08-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287122 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982265 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	91,34 m
Datum:	07.11.2022	Endteufe:	3,00 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 9/22 (2036-678-RKS09-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287114 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982252 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	93,47 m
Datum:	07.11.2022	Endteufe:	6,20 m

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 10/22 (2036-678-RKS10-11/022)		
Auftraggebei	r: VAUWERK GmbH	Rechtswert:	33287131 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982280 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	91,32 m
Datum:	07.11.2022	Endteufe:	2,00 m

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 11/22 (2036-678-RKS11-11/022)		
Auftraggebei	r: VAUWERK GmbH	Rechtswert:	33287155 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982212 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	88,62 m
Datum:	07.11.2022	Endteufe:	2,20 m

Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20

e-mail: <u>info@hsw-rostock.de</u> LAGA-Richtlinie PN 98 (2001-12)

Seite 1 von 19

Prüfbericht -Nr. : H.S.W./08112022-PS02

Prüfbericht vom : 08.11.2022

Objekt /Auftrag : Deklarationsanalytik

BV Tüzen, B-Plan Nr. 6 "Ferienpark Gutsanlage

Tüzen"

Prüfgegenstand : Boden

Probenahmeverfahren: LAGA-RL PN 98

<u>Auftraggeber:</u>

VAUWERK GmbH Strandstraße 96 18055 Rostock

Auftragnehmer:

Tel. 0381/252898-0, Fax 0381/252898-10

E-mail: info@hsw-rostock.de www.hsw-rostock.de

Auftragseingang: 02.11.2022Probenahme am: 08.11.2022

Bemerkungen : -

Probenübergabe an

akkreditiertes Labor : Eurofins Umwelt Nord GmbH

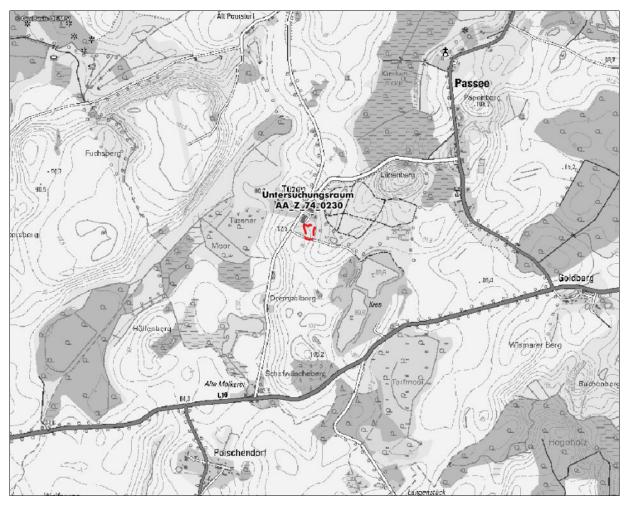
Übergabe am: 08.11.2022Probenahmeprotokolle: Seite 4 – 7Bohrprofile: Seite 8 - 18

Prüfberichtzeichnungsberechtigter : ppa. Dipl.-Ing. P. Steinig

Anny

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			


Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20 e-mail: <u>info@hsw-rostock.de</u>

LAGA-Richtlinie PN 98 (2001-12)

Übersichtslageplan

Quelle: QGIS/ H.S.W.

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20

e-mail: <u>info@hsw-rostock.de</u> LAGA-Richtlinie PN 98 (2001-12)

Protokoll über die Entnahme einer Bodenprobe

Probenehmer/Dienststelle: H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH Gerhart-Hauptmann-Str. 19 18055 Rostock	Gemeinde Passe	Betreff/Anlass/Grund der Probenahme: Gemeinde Passee, OT Tüzen B- Plan Nr. 6 "Ferienpark Gutsanlage Tüzen"		
Projektnummer: 2022/41/678	Veranlasser: VAUWERK GmbH Strandstraße 95 18055 Rostock	1		
Probenahmestelle: Gemeinde: Passee Betrieb:	Ort: Tüzen	Landkreis: Nordwestmecklenburg		

Flurstück/Topografische Karte:	Rechtswert ca.:	Hochwert ca.:
EPSG-Code 5653	siehe Bohrprofile ab Seite 7	siehe Bohrprofile ab Seite 7

Probenahmetag/ Probenahmeuhrzeit : 08.11.2022, 8:00 – 12:00 Uhr

Probenbezeichnung/-nummer : KJ-08-11-22-01

Vermutete Schadstoffe/ Gefährdungen : LAGA komplett

Aufschüttung

Entnahmegerät : Rammkernsonde (RKS)
Herkunft des Bodens : RKS 1-11

Herkunft des Bodens : RKS 1-3
Einzel- oder Mischprobe : MP

bei Mischprobe Zahl der Einzelproben : 11

Entnahmedaten:

Art des Bodens

Art der Lagerung (z.B. bei Bodenhalden / Menge des beprob-	Aufschüttung	Einflüsse auf den Boden	ehemalige Deponie
ten Abfalls)			
Entnahmetiefe (m)	0,35 bis max. 9,20	Lagerungsdauer	-
Farbe	grau, braun	Vergleichsproben	-
Geruch	erdig	Ergebnis Voruntersuchung	-
Festigkeit / Konsistenz	locker bis halbfest	Probenkonservierung	ohne
Homogenität		Art des Probegefäßes	Eimer
	< 3 % nichtmin. FS		
Kornzusammensetzung/	S, U	Probemenge	5 l
-größe			

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20 e-mail: <u>info@hsw-rostock.de</u>

LAGA-Richtlinie PN 98 (2001-12)

to the Amelia II
Lageskizze (unmaßstäblich)
Grundlage der Darstellung: Einmessung mit Bandmaß ☐ Laser ☐ GPS ☒ Rollrad ☐ Nivelliergerät ☐
Einmessung mit banamab () Laser () GP3 () Rollrad () Nivelliergerat ()
<u>Foto</u> :
<u>100</u> ,
GEOTHERMIE PHOTOLOGICAL PROPERTY OF THE PROPER
UMWELTSCHUTZ GEOTECHNIK
GEOLOGIE
COLDENS TO THE SECOND STATE OF THE SECOND STAT
是《大学》(1), 《大学》(1), 《美国·西斯里尔》(1), 不可以现代的《大学》(1)。
在10.40mm 10.50mm 10.5

Foto 1: Beispiel PN- Stellen RKS

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

Gerhart-Hauptmann-Str. 19 D-18055 Rostock

Tel. 0381-252898 0 / Fax 0381-252898 20 e-mail: info@hsw-rostock.de LAGA-Richtlinie PN 98 (2001-12)

Foto 2: RKS 1-11, beprobtes Substrat der Mischprobe

Schichtenprofil:

siehe ab Seite 7

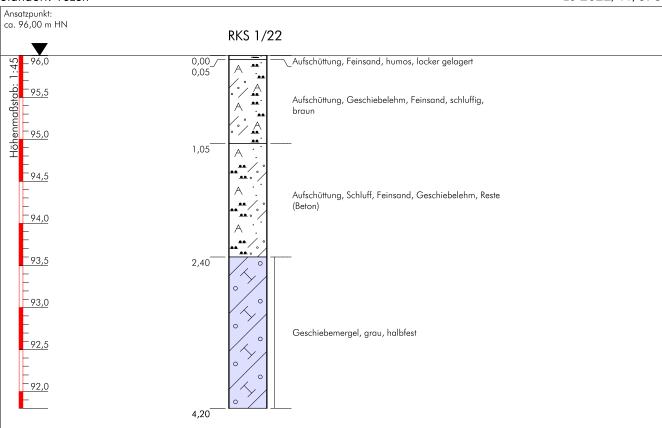
Koordinaten:

RKS	Rechtswert	Hochwert
1	33287091,24	5982231,01
2	33287080,49	5982233,66
3	33287100,13	5982228,4
4	33287126,85	5982220,35
5	33287141,39	5982215,22
6	33287094,16	5982216,43
7	33287088,75	5982204,8
8	33287122,09	5982265,43
9	33287114,01	5982251,7
10	33287130,98	5982280,42
11	33287155,03	5982212,24

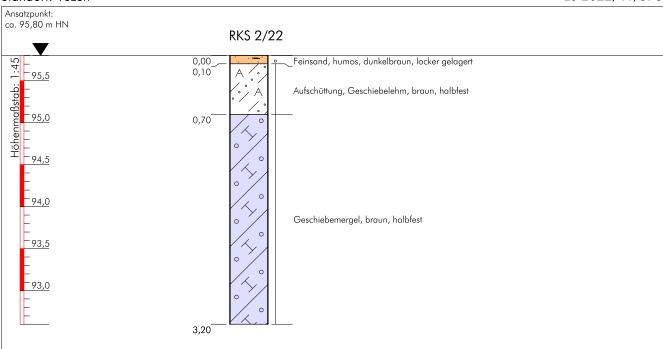
Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

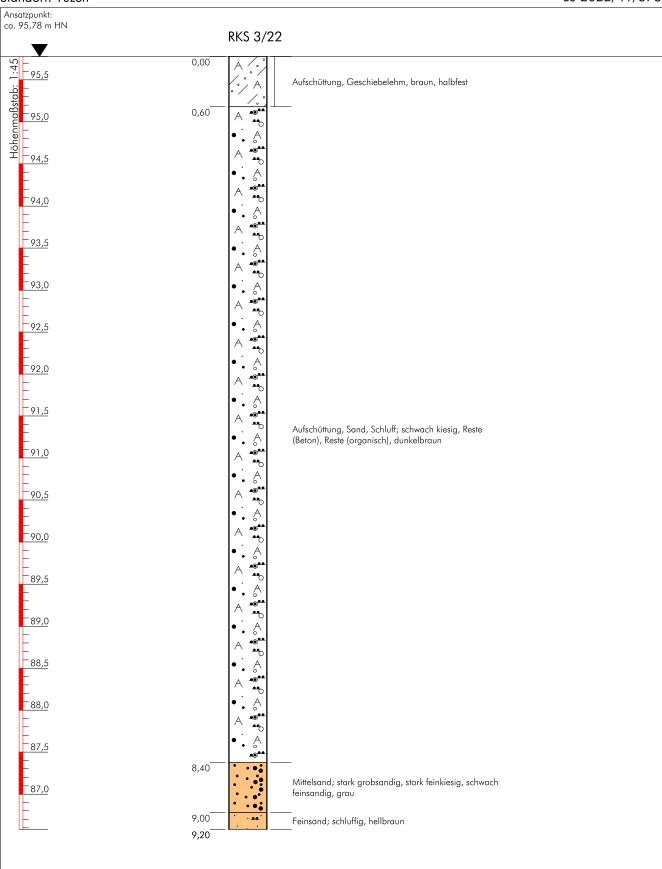
Gerhart-Hauptmann-Str. 19 D-18055 Rostock

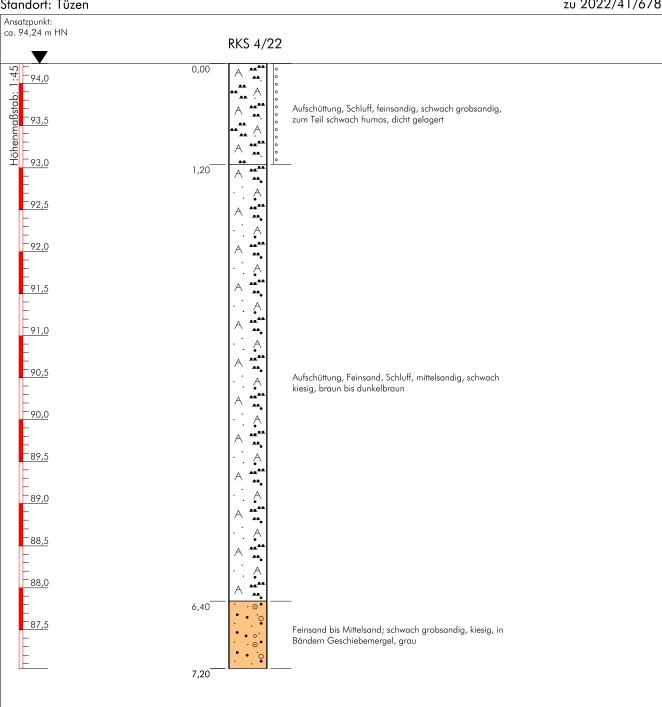

Tel. 0381-252898 0 / Fax 0381-252898 20

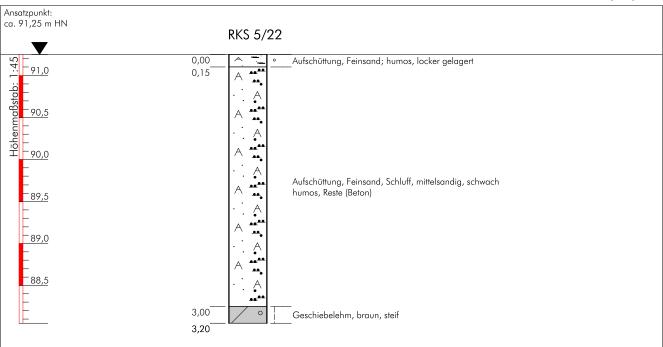
e-mail: <u>info@hsw-rostock.de</u> LAGA-Richtlinie PN 98 (2001-12)

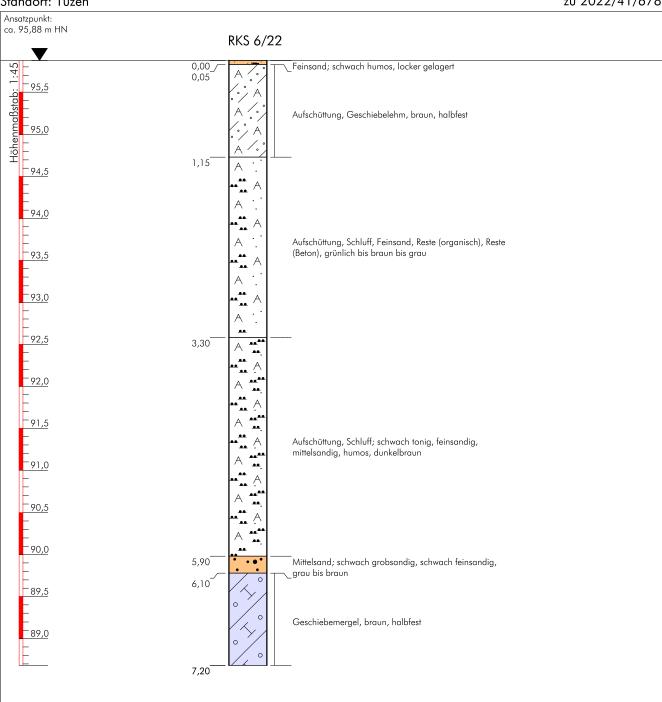

Die Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand. Eine auszugsweise Vervielfältigung des Prüfberichtes ist nicht gestattet.

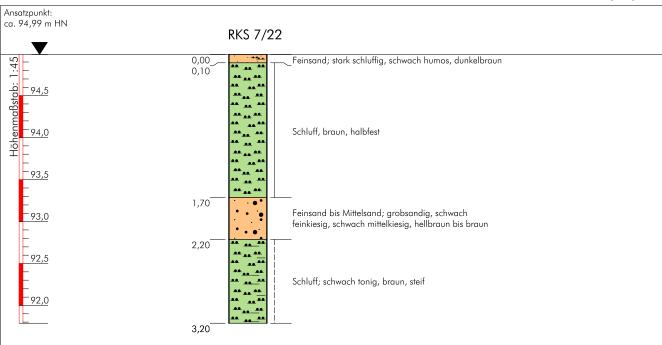
Dokumentenkürzel	Ausgabe	Revisionsstand	Datum	erstellt	geprüft	freigegeben
PN-PNF01-Bodenprobe.doc	1	0	01.07.2011			

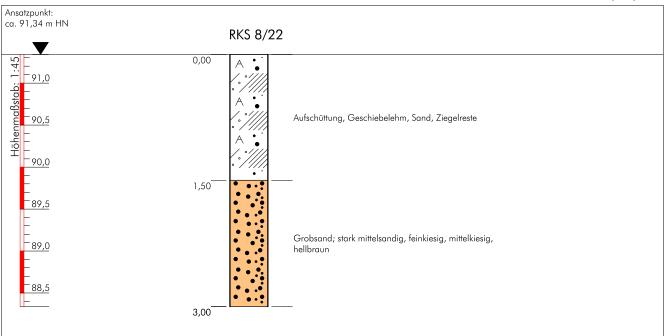

Projekt:	"Ferienpark Gutsanlage Tüzen"			
Bohrung:	RKS 1/22 (2036-678-RKS01-11/022)			
Auftraggebei	r: VAUWERK GmbH	Rechtswert:	33287091	(ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982231	(ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:		96,00 m
Datum:	07.11.2022	Endteufe:		4,20 m

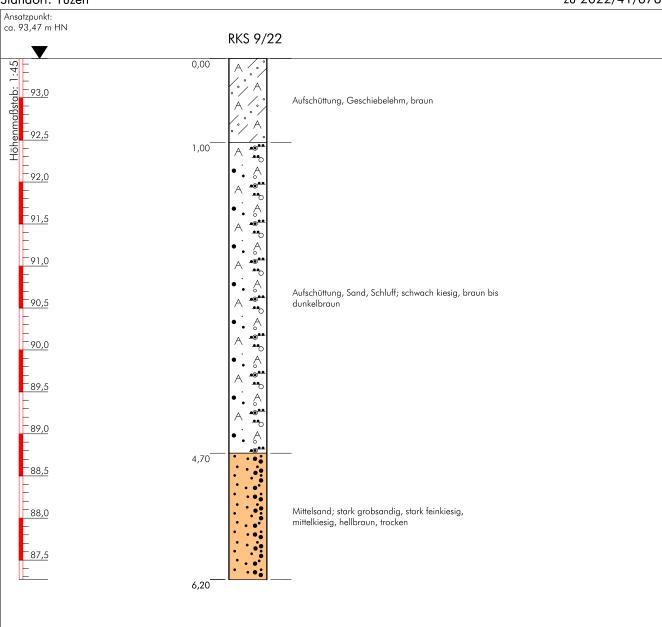

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 2/22 (2036-678-RKS02-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287080 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982234 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	95,80 m
Datum:	07.11.2022	Endteufe:	3,20 m

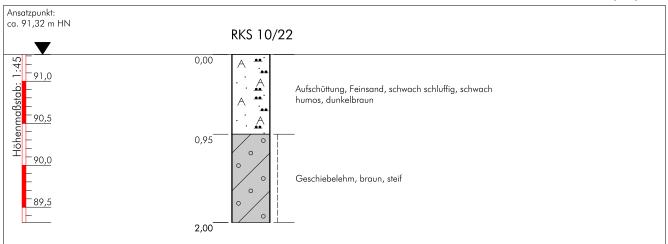

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 3/22 (2036-678-RKS03-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287100 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982228 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	95,78 m
Datum:	07.11.2022	Endteufe:	9,20 m

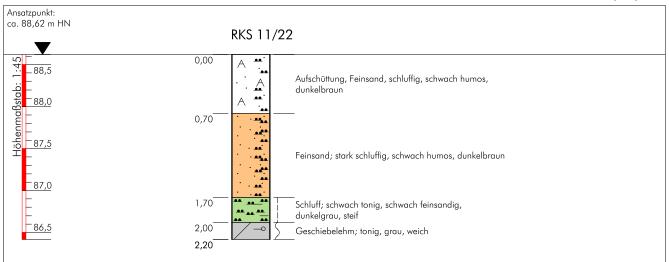

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 4/22 (2036-678-RKS04-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287127 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982220 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	94,24 m
Datum:	07.11.2022	Endteufe:	7,20 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 5/22 (2036-678-RKS05-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287141 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982215 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	91,25 m
Datum:	07.11.2022	Endteufe:	3,20 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 6/22 (2036-678-RKS06-11/022)		
bonnong:	NNS 0/22 (2030-0/0-RNS00-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287094 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982216 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	95,88 m
Datum:	07.11.2022	Endteufe:	7,20 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 7/22 (2036-678-RKS07-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287089 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982205 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	94,99 m
Datum:	07.11.2022	Endteufe:	3,20 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 8/22 (2036-678-RKS08-11/022)		
Auftraggebei	: VAUWERK GmbH	Rechtswert:	33287122 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982265 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	91,34 m
Datum:	07.11.2022	Endteufe:	3,00 m


Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 9/22 (2036-678-RKS09-11/022)		
Auftraggeber	: VAUWERK GmbH	Rechtswert:	33287114 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982252 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	93,47 m
Datum:	07.11.2022	Endteufe:	6,20 m

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 10/22 (2036-678-RKS10-11/022))	
Auftraggebei	r: VAUWERK GmbH	Rechtswert:	33287131 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982280 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	91,32 m
Datum:	07.11.2022	Endteufe:	2,00 m

Projekt:	"Ferienpark Gutsanlage Tüzen"		
Bohrung:	RKS 11/22 (2036-678-RKS11-11/022)		
Auftraggebei	r: VAUWERK GmbH	Rechtswert:	33287155 (ETRS 89)
Bohrfirma:	H.S.W. Ingenieurbüro GmbH	Hochwert:	5982212 (ETRS 89)
Bearbeiter:	K. Jesch-Steinig	Ansatzhöhe:	88,62 m
Datum:	07.11.2022	Endteufe:	2,20 m

angewendete Vergleichstabelle: BBodSchV Tab. 1.2 + 1.4. - Wirkungspfad Boden - Mensch

Bezeichnung			1.4 Wirkungspfad Boden - Mensch Methode	Kinderspiel- flächen	Wohn- gebiete	Freizeit-	Ind u. Gewerbe- grundstücke	KJ-07-11-22-01	KJ-07-11-22-02	KJ-08-11-22-01
Probennummer						umayon	gi di la di deke	322185642	322185643	322186603
Probenghmeort								Flächenbeprobung	RKS 1 -11	RKS 1 - 11
Teufenlage (m u. GOK)								0,00 bis 0,35	jeweils aus dem Liegenden	Auffüllung- 0,35 bis zum jeweiligen Liegenden
Anzuwendende Klasse(n):								Kinderspielflächen	Kinderspielflächen	WP Boden-Mensch: Park- und Freizeitanlagen
Probenvorbereitung Feststoffe										rreizeilarilagen
Fraktion > 2 mm	%	0,1	DIN 19747: 2009-07					25,4	13,8	
Fraktion < 2 mm	%	0,1	DIN 19747: 2009-07					74,6	86,2	
Physikalisch-chemische Kenngrößen aus d	ler Originalsub	stanz	•							
Trockenmasse	Ma%	0,1	DIN EN 14346: 2007-03					93,2	95,2	86,
Anionen aus der Originalsubstanz (Fraktio	on < 2 mm)									
Cyanide, gesamt	mg/kg TS		DIN ISO 17380: 2011	50	50	50	100	< 0,5	< 0,5	< 0,5
Elemente aus Königswasseraufschluss nac										
Arsen (As)	mg/kg TS		DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	25		125	140	5,0	3,9	4,4
Blei (Pb)	mg/kg TS		DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	200		1000	2000	13	9	10
Cadmium (Cd)	mg/kg TS		DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	10		50	60	< 0,2	< 0,2	0,0
Chrom (Cr)	mg/kg TS		DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	200		1000	1000	14	7	13
Nickel (Ni)	mg/kg TS		DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	70		350		10	7	9
Quecksilber (Hg)		0,07	7 DIN EN ISO 12846 (E12): 2012-08	10	20	50	80	< 0,07	< 0,07	< 0,07
PAK aus der Originalsubstanz (Fraktion <										
Naphthalin			DIN ISO 18287: 2006-05					< 0,05	< 0,05	0,43
Acenaphthylen			DIN ISO 18287: 2006-05					< 0,05	< 0,05	0,21
Acenaphthen			DIN ISO 18287: 2006-05					< 0,05	< 0,05	0,39
Fluoren			DIN ISO 18287: 2006-05					< 0,05	0,07	0,90
Phenanthren			DIN ISO 18287: 2006-05					0,24	0,76	6,4
Anthracen			DIN ISO 18287: 2006-05					< 0,05	0,07	1,1
Fluoranthen			DIN ISO 18287: 2006-05					0,70	0,72	5,0
Pyren			DIN ISO 18287: 2006-05					0,56	0,53	3,9
Benzo[a]anthracen			DIN ISO 18287: 2006-05					0,19	0,17	2,7
Chrysen			DIN ISO 18287: 2006-05					0,21	0,22	2,7
Benzo[b]fluoranthen			DIN ISO 18287: 2006-05					0,30	0,25	2,9
Benzo[k]fluoranthen			DIN ISO 18287: 2006-05					0,11	0,11	1,3
Benzo[a]pyren			DIN ISO 18287: 2006-05	0,5	1,0	1,0	5,0	0,19	0,16	2,4
Indeno[1,2,3-cd]pyren			DIN ISO 18287: 2006-05					0,14	0,10	1,6
Dibenzo[a,h]anthracen			DIN ISO 18287: 2006-05					< 0,05	< 0,05	0,33
Benzo[ghi]perylen	0: 0	0,05	DIN ISO 18287: 2006-05					0,15	0,11	1,2
Summe 16 EPA-PAK exkl. BG	mg/kg TS		DIN ISO 18287: 2006-05					2,79	3,27	33,1
Summe 15 PAK ohne Naphthalin exkl. BG	0, 0		DIN ISO 18287: 2006-05						3,27	33,5
PCB aus der Originalsubstanz (Fraktion <										
PCB 28			DIN ISO 10382: 2003-05					< 0,01	< 0,01	< 0,0
PCB 52			DIN ISO 10382: 2003-05					< 0,01	< 0,01	< 0,0
PCB 101	0, 0		DIN ISO 10382: 2003-05					< 0,01	< 0,01	< 0,0
PCB 153			DIN ISO 10382: 2003-05					< 0,01	< 0,01	< 0,0
PCB 138			DIN ISO 10382: 2003-05					< 0,01	< 0,01	< 0,0
PCB 180			DIN ISO 10382: 2003-05					< 0,01	< 0,01	< 0,01
Summe 6 DIN-PCB exkl. BG	mg/kg TS		DIN ISO 10382: 2003-05	0,4	0,8	2	40	(n. b.)	(n. b.)	(n. b.
Phenole aus der Originalsubstanz (Fraktio			Table to a second							
Pentachlorphenol (PCP)			DIN ISO 14154: 2005-12	50	100	250	250	< 0,05	< 0,05	
Organochlorpestizide aus der Originalsub										
Aldrin			DIN ISO 10382 (MSD): 2003-05	2	4	10		< 0,2	< 0,2	
DDT, o,p'-	mg/kg TS		DIN ISO 10382 (MSD): 2003-05					< 0,1	< 0,1	
DDT, p,p'-	mg/kg TS	0,1	DIN ISO 10382 (MSD): 2003-05					< 0,1	< 0,1	
DDT (Summe)	mg/kg TS		DIN ISO 10382 (MSD): 2003-05	40	80	200)	(n. b.)	(n. b.)	
HCH, alpha-	mg/kg TS		DIN ISO 10382 (MSD): 2003-05					< 0,1	< 0,1	
HCH, beta-	mg/kg TS		DIN ISO 10382 (MSD): 2003-05	5	10	25	400	< 0,5	< 0,5	
HCH, gamma- (Lindan)			DIN ISO 10382 (MSD): 2003-05					< 0,1	< 0,1	
HCH, delta-	mg/kg TS		DIN ISO 10382 (MSD): 2003-05					< 0,5	< 0,5	
HCH, epsilon-	mg/kg TS	0,5	DIN ISO 10382 (MSD): 2003-05					< 0,5	< 0,5	
Summe Hexachlorcyclohexane (HCH a-e)		_	berechnet	5	10			(n. b.)	(n. b.)	
Hexachlorbenzol (HCB)	mg/kg TS	0,1	DIN ISO 10382 (MSD): 2003-05	4	8	20	200	< 0,1	< 0,1	

n.b. : nicht berechenbar

n.u. : nicht untersucht Detaillierte Informationen zu den verwendeten Grenz-, Zuordnungs-, Parameter-, Maßnahme- oder Richtwerten sind dem Original-Regelwerk zu entnehmen

Stand: 15.11.2022

Auswertung der Analytik nach der BBodSchV, Vorsorgewerte

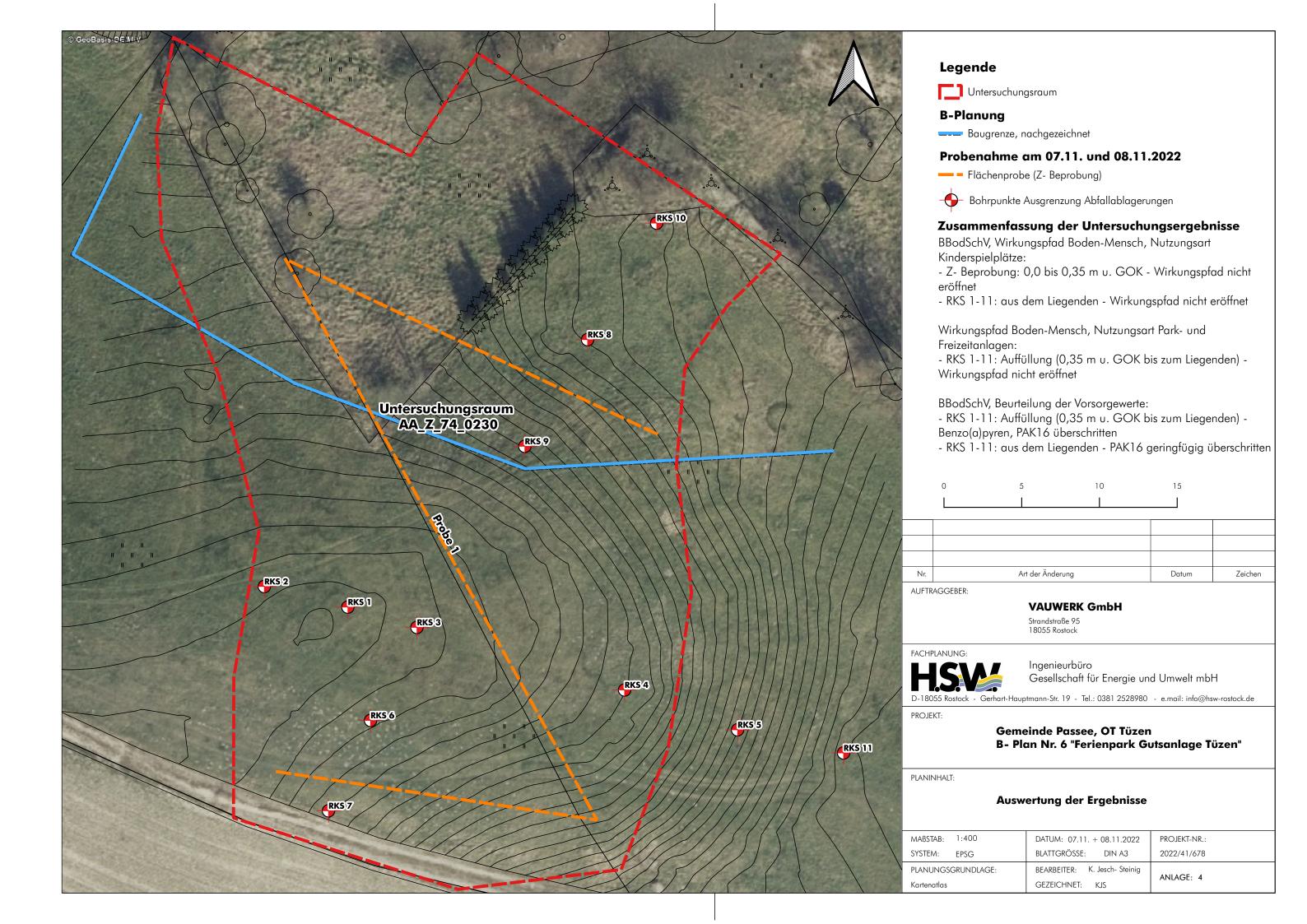
angewendete Vergleichstabelle: BBodSchV Tab. Vorsorgewerte, Anhang 2, Tab. 4.1 und 4.2

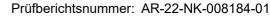
				BBodSchV,	BBodSchV,		
				Vorsorgewerte Böden, Anhang 2, Tab. 4.1	Vorsorgewerte Böden, Anhang 2, Tab. 4.2		
D:	Einhait	BG	M - AL - J -	Böden-	Böden-	KJ-07-11-22-02	KI 00 11 00 01
Bezeichnung	Einheit	BG	Methode	Vorsorgewerte für Metalle, Bodenart Sand	Vorsorgewerte für org. Stoffe, Humusgehalt (≤ 8 %)	KJ-07-11-22-02	KJ-08-11-22-01
Probennummer				bodenan Sana	Tromosgendir (\$ 0 %)	322185643	322186603
Probenahmeort						RKS 1 -11	RKS 1 - 11
Teufenlage (m u. GOK)						jeweils aus dem Liegenden	Auffüllung- 0,35 bis zum jeweiligen Liegenden
Anzuwendende Klasse(n):						Überschreitung Vorsorgewerte Metalle	Überschreitung Vorsorgewerte Metalle
						Überschreitung Vorsorgewerte organische Stoffe	Überschreitung Vorsorgewerte organische Stoffe
Physikalisch-chemische Kenngrößen aus der			DINIEN 1424/ 0007 02			05.0	0/1
Trockenmasse Elemente aus dem Königswasseraufschluss n	Ma% ach DIN EN		DIN EN 14346: 2007-03 7: 2003-01			95,2	86,1
Arsen (As)	mg/kg TS	0,8	DIN EN ISO 17294-2 (E29): 2017-01			3,9	
Blei (Pb)	mg/kg TS		DIN EN ISO 17294-2 (E29): 2017-01	4	0	9	16
Cadmium (Cd) Chrom (Cr)	mg/kg TS mg/kg TS		DIN EN ISO 17294-2 (E29): 2017-01 DIN EN ISO 17294-2 (E29): 2017-01	0,	0	< 0,2	0,3
Kupfer (Cu)	mg/kg TS	1	DIN EN ISO 17294-2 (E29): 2017-01	2	0	/	11
Nickel (Ni)	mg/kg TS	1	DIN EN ISO 17294-2 (E29): 2017-01	1.	5	7	9
Thallium (TI) Quecksilber (Hg)	mg/kg TS		DIN EN ISO 17294-2 (E29): 2017-01 DIN EN ISO 12846 (E12): 2012-08		1	< 0.07	< 0,2
Zink (Zn)	mg/kg TS		DIN EN ISO 12846 (E12): 2012-08 DIN EN ISO 17294-2 (E29): 2017-01	0,	0	< 0,07	< 0,07 172
Anionen aus der Originalsubstanz	1113/113 10	•					
Cyanide, gesamt	mg/kg TS		DIN ISO 17380: 2013-10			< 0,5	< 0,5
Organische Summenparameter aus der Orig TOC	inalsubstanz Ma% TS		DIN EN 15936: 2012-11				1,5
	7VIG70 13	0,1	(AN,L8: Ver.A; FG,F5: Ver.B)				1,5
PCB aus der Originalsubstanz	, TC		In. 15000 001 (10			0.01	0.01
PCB 28 PCB 52			DIN EN 15308: 2016-12 DIN EN 15308: 2016-12			< 0,01 < 0,01	< 0,01 < 0,01
PCB 101	mg/kg TS	0,01	DIN EN 15308: 2016-12			< 0,01	< 0,01
PCB 153			DIN EN 15308: 2016-12			< 0,01	< 0,01
PCB 138 PCB 180			DIN EN 15308: 2016-12 DIN EN 15308: 2016-12			< 0,01 < 0,01	< 0,01 < 0,01
Summe 6 DIN-PCB exkl. BG	mg/kg TS		DIN EN 15308: 2016-12		0,05	(n. b.)	< 0,01 (n. b.)
PAK aus der Originalsubstanz			•		5,70		,
Naphthalin			DIN ISO 18287: 2006-05 DIN ISO 18287: 2006-05			< 0,05 < 0,05	
Acenaphthylen Acenaphthen			DIN ISO 18287: 2006-05			< 0,05	
Fluoren	mg/kg TS	0,05	DIN ISO 18287: 2006-05			0,07	0,90
Phenanthren	mg/kg TS	0,05	DIN ISO 18287: 2006-05			0,76	
Anthracen Fluoranthen	mg/kg TS	0,05	DIN ISO 18287: 2006-05 DIN ISO 18287: 2006-05			0,07 0,72	1,1
Pyren			DIN ISO 18287: 2006-05			0,53	
Benzo[a]anthracen	mg/kg TS	0,05	DIN ISO 18287: 2006-05			0,17	2,7
Chrysen Benzo[b]fluoranthen	mg/kg TS	0,05	DIN ISO 18287: 2006-05 DIN ISO 18287: 2006-05			0,22 0,25	
Benzo[k]fluoranthen	mg/kg TS	0.05	DIN ISO 18287: 2006-05			0,23	1,3
Benzo[a]pyren	mg/kg TS	0,05	DIN ISO 18287: 2006-05		0,3		2,4
Indeno[1,2,3-cd]pyren			DIN ISO 18287: 2006-05			0,10	
Dibenzo[a,h]anthracen Benzo[ghi]perylen			DIN ISO 18287: 2006-05 DIN ISO 18287: 2006-05			< 0,05 0,11	0,33
Summe 16 EPA-PAK exkl.BG	mg/kg TS		DIN ISO 18287: 2006-05		3	3,3	
Zusätzliche Messungen: PAK aus dem 10:1-5	Schütteleluat	nach	DIN EN 12457-4: 2003-01				
Naphthalin	μg/l	0,05	DIN 38407-39 (F39): 2011-09				< 0,05
Acenaphthylen	μg/l	0,05	DIN 38407-39 (F39): 2011-09				< 0,05
Acenaphthen	μg/l	0,05	DIN 38407-39 (F39): 2011-09				< 0,05
Fluoren	μg/l	0,05	DIN 38407-39 (F39): 2011-09				< 0,05
Phenanthren	μg/l		DIN 38407-39 (F39): 2011-09				< 0,05
Anthracen	μg/l		DIN 38407-39 (F39): 2011-09				< 0,05
Fluoranthen	$\mu_{ m g}/ m l$		DIN 38407-39 (F39): 2011-09				0,40
Pyren	μg/l		DIN 38407-39 (F39): 2011-09				0,32
Benzo[a]anthracen	μg/l		DIN 38407-39 (F39): 2011-09				0,06
Chrysen	μg/l		DIN 38407-39 (F39): 2011-09				0,08
Benzo[b]fluoranthen	μg/l		DIN 38407-39 (F39): 2011-09				< 0,05
Benzo[k]fluoranthen	μg/l		DIN 38407-39 (F39): 2011-09				< 0,05
Benzo[a]pyren	μg/l		DIN 38407-39 (F39): 2011-09				< 0,05
Indeno[1,2,3-cd]pyren	μg/l		DIN 38407-39 (F39): 2011-09				< 0,05
Dibenzo[a,h]anthracen	μg/l		DIN 38407-39 (F39): 2011-09				< 0,05
Benzo[ghi]perylen	μg/l	0,05	DIN 38407-39 (F39): 2011-09				< 0,05
Summe 15 PAK ohne Naphthalin exkl. BG	μg/l		DIN 38407-39 (F39): 2011-09				0,86
Summe 16 EPA-PAK exkl. BG	μ_g/I	l	DIN 38407-39 (F39): 2011-09				0,86

n.b. : nicht berechenbar n.u. : nicht untersucht

Detaillierte Informationen zu den verwendeten Grenz-, Zuordnungs-, Parameter-, Maßnahme- oder Richtwerten sind dem Original-Regelwerk zu entnehmen

Auswertung der Analytik nach der LAGA


angewendete Vergleichstabelle: LAGA TR Boden (2004) Tabelle II.1.2-2/-4 + -3/ -5


angewendete Vergleichstabelle: LAG											
	Einheit	BG	Methode	KJ-08-11-22-01	ZO Sand	ZO Lehm/ Schlut	Z0 Ton	Z0*	Z1.1	Z1.2	Z2
Probennummer				322186603							
Probenahmeort				RKS 1 - 11							
Teufenlage (m u. GOK)				Auffüllung-							
Anzuwendende Klasse(n):				0,35 bis zum jeweiligen Liegenden							
Physikalisch-chemische Kenngrößen aus	der Origina	aleuhet	onz	> Z2							
	Ma%		DIN EN 14346: 2007-03	86,1							
Elemente aus dem Königswasseraufschlu											
Arsen (As)	mg/kg TS		DIN EN ISO 17294-2 (E29): 2017-01	4,4	10	15	20	15	45	45	150
Blei (Pb)	mg/kg TS	2	DIN EN ISO 17294-2 (E29): 2017-01	16		70	100	140	210	210	700
Cadmium (Cd)			DIN EN ISO 17294-2 (E29): 2017-01	0,3		1	1,5	1	3	3	10
Chrom (Cr) Kupfer (Cu)	mg/kg TS		DIN EN ISO 17294-2 (E29): 2017-01 DIN EN ISO 17294-2 (E29): 2017-01	13 11	30 20	60 40	100 60	120 80	180 120	180 120	400
Nickel (Ni)	mg/kg TS mg/kg TS		DIN EN ISO 17294-2 (E29): 2017-01	9		50	70	100	150	150	400 500
Thallium (TI)	mg/kg TS		DIN EN ISO 17294-2 (E29): 2017-01	< 0,2	0,4	0,7	1	0,7	2,1	2,1	300
Quecksilber (Hg)			DIN EN ISO 12846 (E12): 2012-08	< 0,07	0,1	0,5	1	1	1,5	1,5	į.
Zink (Zn)	mg/kg TS		DIN EN ISO 17294-2 (E29): 2017-01	172	60	150	200	300	450	450	1500
Anionen aus der Originalsubstanz											
,	0 0	_	DIN ISO 17380: 2013-10	< 0,5					3	3	10
Organische Summenparameter aus der											
TOC	Ma% TS		DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B	1,5	0,5	0,5	0,5	0,5	1,5 3	1,5	10
EOX Kohlenwasserstoffe C10-C22	mg/kg TS mg/kg TS		DIN 38414-17 (\$17): 2017-01 DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	< 1,0 < 40	100	100	100	200	300	300	1000
Kohlenwasserstoffe C10-C22	mg/kg TS		DIN EN 14039: 2005-01/LAGA KW/04: 2019-09 DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	< 40		100	100	400	600	600	2000
BTEX aus der Originalsubstanz	mg/kg 15	40	DIN EN 14037, 2003-01/LAGA KW/04, 2017-07	\ 40				400	000	000	2000
Benzol	mg/kg TS	0,05	DIN EN ISO 22155: 2016-07	< 0,05							
Toluol	mg/kg TS	0,05	DIN EN ISO 22155: 2016-07	< 0,05							
Ethylbenzol	mg/kg TS	0,05	DIN EN ISO 22155: 2016-07	< 0,05							
m-/-p-Xylol			DIN EN ISO 22155: 2016-07	< 0,05							
o-Xylol		0,05	DIN EN ISO 22155: 2016-07	< 0,05							
Summe BTEX	mg/kg TS		DIN EN ISO 22155: 2016-07	(n. b.)	1	1	1	1	1	1	
LHKW aus der Originalsubstanz	mc/l TC	0.05	DINI EN ISO 22155, 2014 07	- 0.05							
Dichlormethan trans-1,2-Dichlorethen			DIN EN ISO 22155: 2016-07 DIN EN ISO 22155: 2016-07	< 0,05 < 0,05							
cis-1,2-Dichlorethen			DIN EN ISO 22155: 2016-07	< 0,05 < 0,05							
Chloroform (Trichlormethan)			DIN EN ISO 22155: 2016-07	< 0,05							
1,1,1-Trichlorethan			DIN EN ISO 22155: 2016-07	< 0,05							
Tetrachlormethan	mg/kg TS	0,05	DIN EN ISO 22155: 2016-07	< 0,05							
Trichlorethen		_	DIN EN ISO 22155: 2016-07	< 0,05							
Tetrachlorethen			DIN EN ISO 22155: 2016-07	< 0,05							
1,1-Dichlorethen			DIN EN ISO 22155: 2016-07	< 0,05							
1,2-Dichlorethan Summe LHKW (10 Parameter)			DIN EN ISO 22155: 2016-07	< 0,05	1	1	- 1	1	1	1	
PCB aus der Originalsubstanz	mg/kg TS		DIN EN ISO 22155: 2016-07	(n. b.)	-	1		ı	- 1		
PCB 28	ma/ka TS	0.01	DIN EN 15308: 2016-12	< 0.01							
PCB 52			DIN EN 15308: 2016-12	< 0,01							
PCB 101			DIN EN 15308: 2016-12	< 0,01							
PCB 153			DIN EN 15308: 2016-12	< 0,01							
PCB 138			DIN EN 15308: 2016-12	< 0,01							
PCB 180			DIN EN 15308: 2016-12	< 0,01							
Summe 6 DIN-PCB exkl. BG	mg/kg TS		DIN EN 15308: 2016-12	(n. b.)	0,05	0,05	0,05	0,1	0,15	0,15	0,5
PAK aus der Originalsubstanz	1 /I . TC	0.05	DIN ISO 10007 0007 05	0.42							
Naphthalin Acenaphthylen			DIN ISO 18287: 2006-05 DIN ISO 18287: 2006-05	0,43 0,21							
Acenaphthen			DIN ISO 18287: 2006-05	0,39							
Fluoren			DIN ISO 18287: 2006-05	0,90							
Phenanthren			DIN ISO 18287: 2006-05	6,4							
Anthracen			DIN ISO 18287: 2006-05	1,1							
Fluoranthen			DIN ISO 18287: 2006-05	5,0							
Pyren			DIN ISO 18287: 2006-05	3,9							
Benzo[a]anthracen			DIN ISO 18287: 2006-05	2,7							
Chrysen			DIN ISO 18287: 2006-05	2,7						_	
Benzo[b]fluoranthen Benzo[k]fluoranthen			DIN ISO 18287: 2006-05 DIN ISO 18287: 2006-05	2,9 1,3							
Benzo[a]pyren			DIN ISO 18287: 2006-05	2.4	0,3	0,3	0,3	0,6	0,9	0,9	3
Indeno[1,2,3-cd]pyren			DIN ISO 18287: 2006-05	1,6		0,0	5,0	0,0	J, /	3,7	
Dibenzo[a,h]anthracen	mg/kg TS	0,05	DIN ISO 18287: 2006-05	0,33							
Benzo[ghi]perylen			DIN ISO 18287: 2006-05	1,2							
	mg/kg TS		DIN ISO 18287: 2006-05	33,5	3	3	3	3	3	3	30
Physikalchem. Kenngrößen a.d. 10:1-S	chüttelelua	t nach		0.4	65.05	/ F . O .	6 F O F	65.05	4.5.0.5	6 10	5 5 3 2
pH-Wert Leitfähigkeit bei 25°C	μS/cm	F	DIN EN ISO 10523 (C5): 2012-04 DIN EN 27888 (C8): 1993-11	8,4 212	6,5 - 9,5 250	6,5 - 9,5 250	6,5 - 9,5 250	6,5 - 9,5 250	5,5 - 9,5 250		2000 2000
Anionen aus dem 10:1-Schütteleluat nac				212	250	250	250	230	230	1500	- 200 0
Chlorid (CI)	mg/l		DIN EN ISO 10304-1 (D20): 2009-07	5,5	30	30	30	30	30	50	100
Sulfat (SO4)	mg/l		DIN EN ISO 10304-1 (D20): 2009-07	29	20	20	20	20	20	50	200
Cyanide, gesamt	μg/l	5	DIN EN ISO 14403-2: 2012-10	< 5	5	5	5	5	5	10	20
Elemente aus dem 10:1-Schütteleluat na											
Arsen (As)	μg/l		DIN EN ISO 17294-2 (E29): 2017-01	10		14	14	14	14	20	60
Blei (Pb)	μg/l		DIN EN ISO 17294-2 (E29): 2017-01	2	40	40	40	40	40	80	200
Cadmium (Cd) Chrom (Cr)	μg/l μg/l		DIN EN ISO 17294-2 (E29): 2017-01 DIN EN ISO 17294-2 (E29): 2017-01	< 0,3 < 1	1,5 12,5	1,5 12,5	1,5 12.5	1,5 12,5	1,5 12,5	3 25	40
Kupfer (Cu)	μg/I μg/I		DIN EN ISO 17294-2 (E29): 2017-01 DIN EN ISO 17294-2 (E29): 2017-01	< 1		20	20	20	20	60	100
Nickel (Ni)	μg/I μg/I		DIN EN ISO 17294-2 (E29): 2017-01	2	15	15	15	15	15	20	70
Quecksilber (Hg)	μg/I μg/I		DIN EN ISO 12846 (E12): 2012-08	< 0,2	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1	2
	μg/l		DIN EN ISO 17294-2 (E29): 2017-01	< 10		150	150	150	150	200	600
Org. Summenparameter aus dem 10:1-	Schüttelelud	at nach	DIN EN 12457-4: 2003-01								
	μ g/l		DIN EN ISO 14402 (H37): 1999-12	< 10	20	20	20	20	20	40	100
Zusätzliche Messungen: Probenvorbereit		ffe									
	kg		DIN 19747: 2009-07	6,9							
Fremdstoffe (Art)	<u> </u>		DIN 19747: 2009-07	nein					ļ		
Fremdstoffe (Menge) Siebrückstand > 10mm	g		DIN 19747: 2009-07 DIN 19747: 2009-07	0,0	<u> </u>						
Fremdstoffe (Anteil)	%	0.1	DIN 19747: 2009-07 DIN 19747: 2009-07	ja < 0,1							
Königswasseraufschluss	70	٥,١	DIN EN 13657: 2003-01	√ 0,1 X							
Zusätzliche Messungen: PCB aus der Or	iginalsubsta	ınz		^							
PCB 118			DIN EN 15308: 2016-12	< 0,01							
Summe PCB (7)	mg/kg TS		DIN EN 15308: 2016-12	(n. b.)							
0 /		us den	10:1-Schütteleluat nach DIN EN 12457-4: 2003-01								
Temperatur pH-Wert	°C		DIN 38404-4 (C4): 1976-12	19,9							

n.b. : nicht berechenbar

n.u. : nicht untersucht

Detaillierte Informationen zu den verwendeten Grenz-, Zuordnungs-, Parameter-, Maßnahme- oder Richtwerten sind dem Original-Regelwerk zu entnehmen

Seite 1 von 4

Eurofins Umwelt Nord GmbH - Demmlerstraße 9 - 19053 Schwerin

H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH Gerhart-Hauptmann-Str. 19 18055 Rostock

Titel: Prüfbericht zu Auftrag 32242308

Prüfberichtsnummer: AR-22-NK-008184-01

Auftragsbezeichnung: Tüzen, B-Plan Nr. 6

Anzahl Proben: 1

Probenart: Boden

Probenahmedatum: **07.11.2022**Probenehmer: **Auftraggeber**

Anlieferung normenkonform: Ja

Probeneingangsdatum: 09.11.2022

Prüfzeitraum: **09.11.2022 - 15.11.2022**

Kommentar: Untersuchung gemäß Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)

vom 12.07.1999; Wirkungspfad Boden - Mensch

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Anhänge:

XML_Export_AR-22-NK-008184-01.xml

Dr. Stefanie Kohse Digital signiert, 15.11.2022

Niederlassungsleitung Ilona Pinnow Tel. +49 385 572755 0 Prüfleitung

Umwelt

								Probenbeze	eichnung	KJ-07-11- 22-01
								Probenahm	edatum/ -zeit	07.11.2022
					Vergleid	hswerte		Probennum	mer	322185642
Parameter	Lab.	Akkr.	Methode	Kinder- spielflä- chen	Wohnge- biete	Park- u. Freizeit- anlagen	Ind u. Gewer- begrund- stücke	BG	Einheit	
Probenvorbereitung Festst	offe									
Fraktion < 2 mm	FR/f	F5	DIN 19747: 2009-07					0,1	%	74,6 ± 6,7
Fraktion > 2 mm	FR/f	F5	DIN 19747: 2009-07					0,1	%	25,4 ± 2,3
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz						
Trockenmasse	FR/f	F5	DIN EN 14346: 2007-03					0,1	Ma%	93,2 ± 8,4
Anionen aus der Originalsu	bstanz	⊥ ∠(Frak	tion < 2 mm)							
Cyanide, gesamt	FR/f	F5	DIN ISO 17380: 2011	50	50	50	100	0,5	mg/kg TS	< 0.5
Elemente aus Königswasse	raufec	hluee	nach DIN ISO 1146	 	 	 <2mm\#		,	0 0	•
			DIN EN ISO	J. 1397-00	, i raktioi					
Arsen (As)	FR/f	F5	17294-2:(AN,L8:2005-02; FR,F5:2017-01)	25	50	125	140	0,8	mg/kg TS	5,0 ± 1,0
Blei (Pb)	FR/f	F5	DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	200	400	1000	2000	2	mg/kg TS	13 ± 2,6
Cadmium (Cd)	FR/f	F5	DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	10 ²⁾	20 ²⁾	50	60	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR/f	F5	DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	200	400	1000	1000	1	mg/kg TS	14 ± 2,8
Nickel (Ni)	FR/f	F5	DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	70	140	350	900	1	mg/kg TS	10 ± 2,0
Quecksilber (Hg)	FR/f	F5	DIN EN ISO 12846 (E12): 2012-08	10	20	50	80	0,07	mg/kg TS	< 0,07
PAK aus der Originalsubsta	anz (Fr	aktion	< 2 mm)							
Naphthalin	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Acenaphthylen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Acenaphthen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Fluoren	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Phenanthren	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,24 ± 0,084
Anthracen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,70 ± 0,25
Pyren	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,56 ± 0,20
Benzo[a]anthracen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,19 ± 0,067
Chrysen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,21 ± 0,074
Benzo[b]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,30 ± 0,11
Benzo[k]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,11 ± 0,039
Benzo[a]pyren	FR/f	F5	DIN ISO 18287: 2006-05	2	4	10	12	0,05	mg/kg TS	0,19 ± 0,067
Indeno[1,2,3-cd]pyren	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,14 ± 0,049
Dibenzo[a,h]anthracen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Benzo[ghi]perylen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,15 ± 0,053
Summe 16 EPA-PAK exkl. BG	FR/f	F5	DIN ISO 18287: 2006-05						mg/kg TS	2,79 ± 0,84

Umwelt

								Probenbezo	eichnung	KJ-07-11- 22-01
								Probenahm	nedatum/ -zeit	07.11.2022
					Vergleid	hswerte		Probennum	322185642	
Parameter	Lab.	Akkr.	Methode	Kinder- spielflä- chen	Wohnge- biete	Park- u. Freizeit- anlagen	Ind u. Gewer- begrund- stücke	BG	Einheit	
PCB aus der Originalsubsta	nz (Fr	aktion	< 2 mm)							
PCB 28	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 52	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 101	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 153	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 138	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 180	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
Summe 6 DIN-PCB exkl. BG	FR/f	F5	DIN ISO 10382: 2003-05	0,4	0,8	2	40		mg/kg TS	(n. b.) 1)
Phenole aus der Originalsub	ostanz	(Frak	tion < 2 mm)		•		•	•		•
Pentachlorphenol (PCP)	FR/f	F5	DIN ISO 14154: 2005-12	50	100	250	250	0,05	mg/kg TS	< 0,05
Organochlorpestizide aus d	er Ori	ginalsı	ubstanz (Fraktion <	2 mm)	•	•	•	•	•	•
Aldrin	FR/f	F5	DIN ISO 10382 (MSD): 2003-05	2	4	10		0,2	mg/kg TS	< 0,2
DDT, o,p'-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,1	mg/kg TS	< 0,1
DDT, p,p'-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,1	mg/kg TS	< 0,1
DDT (Summe)	FR/f	F5	DIN ISO 10382 (MSD): 2003-05	40	80	200			mg/kg TS	(n. b.) 1)
HCH, alpha-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,1	mg/kg TS	< 0,1
HCH, beta-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05	5	10	25	400	0,5	mg/kg TS	< 0,5
HCH, gamma- (Lindan)	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,1	mg/kg TS	< 0,1
HCH, delta-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,5	mg/kg TS	< 0,5
HCH, epsilon-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,5	mg/kg TS	< 0,5
Summe Hexachlorcyclohexane (HCH a-e)	FR/f	F5	berechnet	5	10	25	400		mg/kg TS	(n. b.) ¹⁾
Hexachlorbenzol (HCB)	FR/f	F5	DIN ISO 10382 (MSD): 2003-05	4	8	20	200	0,1	mg/kg TS	< 0,1

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Die Abschätzung der Messunsicherheit erfolgt auf Basis der DIN ISO 11352. Statistische Randbedingungen: k=2; P=95%

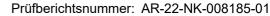
Kommentare zu Ergebnissen

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

[#] Heizblock-Aufschluss außer bei Untersuchungen im gesetzlich geregelten Bereich.

¹⁾ nicht berechenbar



Erläuterungen zu Vergleichswerten

Untersuchung nach BBodSchV Tab. 1.2 + 1.4. - Wirkungspfad Boden - Mensch.

²⁾ In Haus- und Kleingärten, die sowohl als Aufenthaltsbereiche für Kinder als auch für den Anbau von Nahrungspflanzen genutzt werden, ist für Cadmium der Wert von 2,0 mg/kg TM als Prüfwert anzuwenden.

Bei der Darstellung von Vergleichswerten im Prüfbericht handelt es sich um eine Serviceleistung der EUROFINS UMWELT. Die zitierten Vergleichswerte (Grenz-, Richt- oder sonstige Zuordnungswerte) sind teilweise vereinfacht dargestellt und berücksichtigen nicht alle Kommentare, Nebenbestimmungen und/oder Ausnahmeregelungen des entsprechenden Regelwerkes.

Seite 1 von 4

Eurofins Umwelt Nord GmbH - Demmlerstraße 9 - 19053 Schwerin

H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH Gerhart-Hauptmann-Str. 19 18055 Rostock

Titel: Prüfbericht zu Auftrag 32242308

Prüfberichtsnummer: AR-22-NK-008185-01

Auftragsbezeichnung: Tüzen, B-Plan Nr. 6

Anzahl Proben: 1

Probenart: Boden

Probenahmedatum: **07.11.2022**Probenehmer: **Auftraggeber**

Anlieferung normenkonform: Ja

Probeneingangsdatum: 09.11.2022

Prüfzeitraum: **09.11.2022 - 15.11.2022**

Kommentar: Untersuchung gemäß Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)

vom 12.07.1999; Wirkungspfad Boden - Mensch

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Anhänge:

XML_Export_AR-22-NK-008185-01.xml

Dr. Stefanie Kohse Digital signiert, 15.11.2022

Niederlassungsleitung Ilona Pinnow Tel. +49 385 572755 0 Prüfleitung

Umwelt

			, iiiwcit					Probenbeze	ichnung	KJ-07-11- 22-02
								Probenahme	edatum/ -zeit	07.11.2022
					Vergleid	hswerte		Probennum	mer	322185643
Parameter	Lab.	Akkr.	Methode	Kinder- spielflä- chen	Wohnge- biete	Park- u. Freizeit- anlagen	Ind u. Gewer- begrund- stücke	BG	Einheit	
Probenvorbereitung Festste	offe		•						•	
Fraktion < 2 mm	FR/f	F5	DIN 19747: 2009-07					0,1	%	86,2 ± 7,8
Fraktion > 2 mm	FR/f	F5	DIN 19747: 2009-07					0,1	%	13,8 ± 1,2
Physikalisch-chemische Ke	nngrö	ßen au	s der Originalsubs	tanz					•	
Trockenmasse	FR/f	F5	DIN EN 14346: 2007-03					0,1	Ma%	95,2 ± 8,6
Anionen aus der Originalsu	ıbstanz	(Frak	tion < 2 mm)		1					
Cyanide, gesamt	FR/f	F5	DIN ISO 17380: 2011	50	50	50	100	0,5	mg/kg TS	< 0,5
Elemente aus Königswasse	raufec	hluee	nach DIN ISO 1146	 		(2mm)#		1 -,-	3 3	-,-
Arsen (As)	FR/f	F5	DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	25	50	125	140	0,8	mg/kg TS	3,9 ± 0,78
Blei (Pb)	FR/f	F5	DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	200	400	1000	2000	2	mg/kg TS	9 ± 1,8
Cadmium (Cd)	FR/f	F5	DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	10 ²⁾	20 ²⁾	50	60	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR/f	F5	DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	200	400	1000	1000	1	mg/kg TS	7 ± 1,4
Nickel (Ni)	FR/f	F5	DIN EN ISO 17294-2:(AN,L8:2005-02; FR,F5:2017-01)	70	140	350	900	1	mg/kg TS	7 ± 1,4
Quecksilber (Hg)	FR/f	F5	DIN EN ISO 12846 (E12): 2012-08	10	20	50	80	0,07	mg/kg TS	< 0,07
PAK aus der Originalsubsta	anz (Fr	aktion	< 2 mm)							
Naphthalin	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Acenaphthylen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Acenaphthen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Fluoren	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,07 ± 0,025
Phenanthren	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,76 ± 0,27
Anthracen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,07 ± 0,025
Fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,72 ± 0,25
Pyren	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,53 ± 0,19
Benzo[a]anthracen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,17 ± 0,060
Chrysen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,22 ± 0,077
Benzo[b]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,25 ± 0,088
Benzo[k]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,11 ± 0,039
Benzo[a]pyren	FR/f	F5	DIN ISO 18287: 2006-05	2	4	10	12	0,05	mg/kg TS	0,16 ± 0,056
Indeno[1,2,3-cd]pyren	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,10 ± 0,035
Dibenzo[a,h]anthracen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	< 0,05
Benzo[ghi]perylen	FR/f	F5	DIN ISO 18287: 2006-05					0,05	mg/kg TS	0,11 ± 0,039
Summe 16 EPA-PAK exkl. BG	FR/f	F5	DIN ISO 18287: 2006-05						mg/kg TS	3,27 ± 0,98
Summe 15 PAK ohne Naphthalin exkl. BG	FR/f	F5	DIN ISO 18287: 2006-05						mg/kg TS	3,27 ± 0,98

Umwelt

								Probenbezo	eichnung	KJ-07-11- 22-02
								Probenahm	nedatum/ -zeit	07.11.2022
					Vergleid	hswerte		Probennum	nmer	322185643
Parameter	Lab.	Akkr.	Methode	Kinder- spielflä- chen	Wohnge- biete	Park- u. Freizeit- anlagen	Ind u. Gewer- begrund- stücke	BG	Einheit	
PCB aus der Originalsubsta	nz (Fr	aktion	< 2 mm)							
PCB 28	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 52	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 101	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 153	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 138	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
PCB 180	FR/f	F5	DIN ISO 10382: 2003-05					0,01	mg/kg TS	< 0,01
Summe 6 DIN-PCB exkl. BG	FR/f	F5	DIN ISO 10382: 2003-05	0,4	0,8	2	40		mg/kg TS	(n. b.) 1)
Phenole aus der Originalsul	ostanz	(Frak	tion < 2 mm)				•	•		
Pentachlorphenol (PCP)	FR/f	F5	DIN ISO 14154: 2005-12	50	100	250	250	0,05	mg/kg TS	< 0,05
Organochlorpestizide aus d	er Ori	ginalsı	ubstanz (Fraktion <	2 mm)	•	•			1	
Aldrin	FR/f	F5	DIN ISO 10382 (MSD): 2003-05	2	4	10		0,2	mg/kg TS	< 0,2
DDT, o,p'-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,1	mg/kg TS	< 0,1
DDT, p,p'-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,1	mg/kg TS	< 0,1
DDT (Summe)	FR/f	F5	DIN ISO 10382 (MSD): 2003-05	40	80	200			mg/kg TS	(n. b.) 1)
HCH, alpha-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,1	mg/kg TS	< 0,1
HCH, beta-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05	5	10	25	400	0,5	mg/kg TS	< 0,5
HCH, gamma- (Lindan)	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,1	mg/kg TS	< 0,1
HCH, delta-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,5	mg/kg TS	< 0,5
HCH, epsilon-	FR/f	F5	DIN ISO 10382 (MSD): 2003-05					0,5	mg/kg TS	< 0,5
Summe Hexachlorcyclohexane (HCH a-e)	FR/f	F5	berechnet	5	10	25	400		mg/kg TS	(n. b.) ¹⁾
Hexachlorbenzol (HCB)	FR/f	F5	DIN ISO 10382 (MSD): 2003-05	4	8	20	200	0,1	mg/kg TS	< 0,1

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Die Abschätzung der Messunsicherheit erfolgt auf Basis der DIN ISO 11352. Statistische Randbedingungen: k=2; P=95%

Kommentare zu Ergebnissen

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

[#] Heizblock-Aufschluss außer bei Untersuchungen im gesetzlich geregelten Bereich.

¹⁾ nicht berechenbar

Erläuterungen zu Vergleichswerten

Untersuchung nach BBodSchV Tab. 1.2 + 1.4. - Wirkungspfad Boden - Mensch.

²⁾ In Haus- und Kleingärten, die sowohl als Aufenthaltsbereiche für Kinder als auch für den Anbau von Nahrungspflanzen genutzt werden, ist für Cadmium der Wert von 2,0 mg/kg TM als Prüfwert anzuwenden.

Bei der Darstellung von Vergleichswerten im Prüfbericht handelt es sich um eine Serviceleistung der EUROFINS UMWELT. Die zitierten Vergleichswerte (Grenz-, Richt- oder sonstige Zuordnungswerte) sind teilweise vereinfacht dargestellt und berücksichtigen nicht alle Kommentare, Nebenbestimmungen und/oder Ausnahmeregelungen des entsprechenden Regelwerkes.

Seite 1 von 8

Eurofins Umwelt Nord GmbH - Demmlerstraße 9 - 19053 Schwerin

H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH Gerhart-Hauptmann-Str. 19 18055 Rostock

Titel: Prüfbericht zu Auftrag 32242547

Prüfberichtsnummer: AR-22-NK-008202-01

Auftragsbezeichnung: Tüzen, B-Plan Nr. 6

Anzahl Proben: 1

Probenart: Boden

Probenahmedatum: **08.11.2022**Probenehmer: **Auftraggeber**

Anlieferung normenkonform: Ja

Probeneingangsdatum: 10.11.2022

Prüfzeitraum: 10.11.2022 - 16.11.2022

Kommentar: Untersuchung gemäß TR LAGA für Boden (Tab. II.1.2.-2/4 + -3/5) 2004

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Anhänge:

XML_Export_AR-22-NK-008202-01.xml

Dr. Stefanie Kohse Digital signiert, 16.11.2022

Niederlassungsleitung Ilona Pinnow Tel. +49 385 572755 0 Prüfleitung

Umwelt

											Probenbezeichnung		KJ-08-11- 22-01
											Probenahm	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
Probenvorbereitung Fests	toffe	1	ı					I		I			
Probenmenge inkl. Verpackung	FR/f	F5	DIN 19747: 2009-07									kg	6,9
Fremdstoffe (Art)	FR/f	F5	DIN 19747: 2009-07										nein
Fremdstoffe (Menge)	FR/f	F5	DIN 19747: 2009-07									g	0,0
Siebrückstand > 10mm	FR/f	F5	DIN 19747: 2009-07										ja
Fremdstoffe (Anteil)	FR/f	F5	DIN 19747: 2009-07								0,1	%	< 0,1
Königswasseraufschluss	FR/f	F5	DIN EN 13657: 2003-01										Х
Physikalisch-chemische K	enngrö	ßen au	ıs der Originalsubsi	tanz									
Trockenmasse	FR/f	F5	DIN EN 14346: 2007-03								0,1	Ma%	86,1
Anionen aus der Originals	ubstanz	Z							•	ı	1	•	
Cyanide, gesamt	FR/f	F5	DIN ISO 17380: 2013-10					3	3	10	0,5	mg/kg TS	< 0,5
Elemente aus dem Königs	wasser	aufsch	luss nach DIN EN 1	3657: 200	3-01#						1	1	
Arsen (As)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	10	15	20	15 ²⁾	45	45	150	0,8	mg/kg TS	4,4
Blei (Pb)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	40	70	100	140	210	210	700	2	mg/kg TS	16
Cadmium (Cd)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,4	1	1,5	1 ³⁾	3	3	10	0,2	mg/kg TS	0,3
Chrom (Cr)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	30	60	100	120	180	180	600	1	mg/kg TS	13
Kupfer (Cu)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	20	40	60	80	120	120	400	1	mg/kg TS	11
Nickel (Ni)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	15	50	70	100	150	150	500	1	mg/kg TS	9
Quecksilber (Hg)	FR/f	F5	DIN EN ISO 12846 (E12): 2012-08	0,1	0,5	1	1	1,5	1,5	5	0,07	mg/kg TS	< 0,07
Thallium (TI)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,4	0,7	1	0,7 4)	2,1	2,1	7	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	60	150	200	300	450	450	1500	1	mg/kg TS	172

											Probenbeze	ichnung	KJ-08-11- 22-01
											Probenahm	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
Organische Summenparame	eter au	us der	Originalsubstanz	1				l	1	1			
тос	FR/f	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,5 5)	0,5 5)	0,5 5)	0,5 5)	1,5	1,5	5	0,1	Ma% TS	1,5
EOX	FR/f	F5	DIN 38414-17 (S17): 2017-01	1	1	1	1 ⁶⁾	3 ⁶⁾	3 ⁶⁾	10	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	FR/f	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	100	100	100	200	300	300	1000	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR/f	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09				400	600	600	2000	40	mg/kg TS	< 40
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origin	alsubstan	z			•			1		
Benzol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Toluol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Ethylbenzol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
m-/-p-Xylol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
o-Xylol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Summe BTEX	FR/f	F5	DIN EN ISO 22155: 2016-07	1	1	1	1	1	1	1		mg/kg TS	(n. b.) 1)

											Probenbeze	ichnung	KJ-08-11- 22-01
											Probenahme	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
LHKW aus der Originalsubs	tanz		ı	1				I.	I				
Dichlormethan	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
trans-1,2-Dichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
cis-1,2-Dichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Chloroform (Trichlormethan)	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
1,1,1-Trichlorethan	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Tetrachlormethan	FR/f		DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Trichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Tetrachlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
1,1-Dichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
1,2-Dichlorethan	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Summe LHKW (10 Parameter)	FR/f	F5	DIN EN ISO 22155: 2016-07	1	1	1	1	1	1	1		mg/kg TS	(n. b.) 1)

											Probenbeze Probenahm	eichnung	KJ-08-11- 22-01 08.11.2022
						Vei	gleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
PAK aus der Originalsubsta	anz		I										
Naphthalin	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,43
Acenaphthylen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,21
Acenaphthen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,39
Fluoren	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,90
Phenanthren	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	6,4
Anthracen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	1,1
Fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	5,0
Pyren	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	3,9
Benzo[a]anthracen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	2,7
Chrysen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	2,7
Benzo[b]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	2,9
Benzo[k]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	1,3
Benzo[a]pyren	FR/f	F5	DIN ISO 18287: 2006-05	0,3	0,3	0,3	0,6	0,9	0,9	3	0,05	mg/kg TS	2,4
Indeno[1,2,3-cd]pyren	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	1,6
Dibenzo[a,h]anthracen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,33
Benzo[ghi]perylen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	1,2
Summe 16 EPA-PAK exkl. BG	FR/f	F5	DIN ISO 18287: 2006-05	3	3	3	3	3 ⁷⁾	3 7)	30		mg/kg TS	33,5

											Probenbeze	eichnung	KJ-08-11- 22-01
											Probenahm	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
PCB aus der Originalsubsta	nz	ļ		1						1	L		
PCB 28	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 52	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 101	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 153	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 138	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 180	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
Summe 6 DIN-PCB exkl. BG	FR/f	F5	DIN EN 15308: 2016-12	0,05	0,05	0,05	0,1	0,15	0,15	0,5		mg/kg TS	(n. b.) 1)
PCB 118	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
Summe PCB (7)	FR/f	F5	DIN EN 15308: 2016-12									mg/kg TS	(n. b.) 1)
Physchem. Kenngrößen au	ıs den	n 10:1-	Schütteleluat nach	DIN EN 12	2457-4: 20	03-01	•			•			
pH-Wert	FR/f	F5	DIN EN ISO 10523 (C5): 2012-04	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12			8,4
Temperatur pH-Wert	FR/f	F5	DIN 38404-4 (C4): 1976-12									°C	19,9
Leitfähigkeit bei 25°C	FR/f	F5	DIN EN 27888 (C8): 1993-11	250	250	250	250	250	1500	2000	5	μS/cm	212
Anionen aus dem 10:1-Schü	ittelelu	uat nad	ch DIN EN 12457-4:	2003-01									,
Chlorid (CI)	FR/f	F5	DIN EN ISO 10304-1 (D20): 2009-07	30	30	30	30	30	50	100 8)	1,0	mg/l	5,5
Sulfat (SO4)	FR/f	F5	DIN EN ISO 10304-1 (D20): 2009-07	20	20	20	20	20	50	200	1,0	mg/l	29
Cyanide, gesamt	FR/f	F5	DIN EN ISO 14403-2: 2012-10	5	5	5	5	5	10	20	5	μg/l	< 5

											Probenbeze	ichnung	KJ-08-11- 22-01
											Probenahme	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
Elemente aus dem 10:1-Scl	nüttele	luat na	ach DIN EN 12457-4	2003-01	1	I.	I	1	I.		l	1	
Arsen (As)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	14	14	14	14	14	20	60 ⁹⁾	1	μg/l	10
Blei (Pb)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	40	40	40	40	40	80	200	1	μg/l	2
Cadmium (Cd)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	1,5	1,5	1,5	1,5	1,5	3	6	0,3	μg/l	< 0,3
Chrom (Cr)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	12,5	12,5	12,5	12,5	12,5	25	60	1	μg/l	< 1
Kupfer (Cu)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	20	20	20	20	20	60	100	5	μg/l	6
Nickel (Ni)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	15	15	15	15	15	20	70	1	μg/l	2
Quecksilber (Hg)	FR/f	F5	DIN EN ISO 12846 (E12): 2012-08	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1	2	0,2	μg/l	< 0,2
Zink (Zn)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	150	150	150	150	150	200	600	10	μg/l	< 10
Org. Summenparameter au	s dem	10:1-S	schütteleluat nach D	IN EN 12	457-4: 200	3-01		·					
Phenolindex, wasserdampfflüchtig	FR/f	F5	DIN EN ISO 14402 (H37): 1999-12	20	20	20	20	20	40	100	10	μg/l	< 10

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

X - durchgeführt

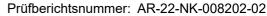
Heizblock-Aufschluss außer bei Untersuchungen im gesetzlich geregelten Bereich.

Kommentare zu Ergebnissen

1) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.


Erläuterungen zu Vergleichswerten

Untersuchung nach LAGA TR Boden (2004) Tabelle II.1.2-2/-4 + -3/ -5.

Zuordnungswerte für Grenzwerte Z0*: Maximale Feststoffgehalte für die Verfüllung von Abgrabungen unter Einhaltung bestimmter Randbedingungen (siehe "Ausnahmen von der Regel" für die Verfüllung von Abgrabungen in Nr. II.1.2.3.2).

- ²⁾ Der Wert 15 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 20 mg/kg.
- ³⁾ Der Wert 1 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,5 mg/kg.
- 4) Der Wert 0,7 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,0 mg/kg.
- ⁵⁾ Bei einem C:N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%.
- ⁶⁾ Bei Überschreitung ist die Ursache zu prüfen.
- 7) Bodenmaterial mit Zuordnungswerten > 3 mg/kg und ≤ 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden.
- ⁸⁾ Bei natürlichen Böden in Ausnahmefällen bis 300 mg/l.
- ⁹⁾ Bei natürlichen Böden in Ausnahmefällen bis 120 μg/l.

Bei der Darstellung von Vergleichswerten im Prüfbericht handelt es sich um eine Serviceleistung der EUROFINS UMWELT. Die zitierten Vergleichswerte (Grenz-, Richt- oder sonstige Zuordnungswerte) sind teilweise vereinfacht dargestellt und berücksichtigen nicht alle Kommentare, Nebenbestimmungen und/oder Ausnahmeregelungen des entsprechenden Regelwerkes.

Seite 1 von 9

Eurofins Umwelt Nord GmbH - Demmlerstraße 9 - 19053 Schwerin

H.S.W. Ingenieurbüro Gesellschaft für Energie und Umwelt mbH Gerhart-Hauptmann-Str. 19 18055 Rostock

Dieser Prüfbericht ersetzt den Prüfbericht Nr. AR-22-NK-008202-01 vom 16.11.2022 aufgrund von Erweiterung des Prüfumfangs.

Titel: Prüfbericht zu Auftrag 32242547

Prüfberichtsnummer: AR-22-NK-008202-02

Auftragsbezeichnung: Tüzen, B-Plan Nr. 6

Anzahl Proben: 1

Probenart: Boden
Probenahmedatum: 08.11.2022
Probenehmer: Auftraggeber

Anlieferung normenkonform: Ja

Probeneingangsdatum: 10.11.2022

Prüfzeitraum: **10.11.2022 - 22.11.2022**

Kommentar: Untersuchung gemäß TR LAGA für Boden (Tab. II.1.2.-2/4 + -3/5) 2004

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Anhänge:

XML_Export_AR-22-NK-008202-02.xml

Dr. Stefanie Kohse Digital signiert, 22.11.2022

Niederlassungsleitung Ilona Pinnow Tel. +49 385 572755 0 Prüfleitung

											Probenbeze	eichnung	KJ-08-11- 22-01
											Probenahm	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
Probenvorbereitung Festst	offe	ļ						I .	1	L	1		
Probenmenge inkl. Verpackung	FR/f	F5	DIN 19747: 2009-07									kg	6,9
Fremdstoffe (Art)	FR/f	F5	DIN 19747: 2009-07										nein
Fremdstoffe (Menge)	FR/f	F5	DIN 19747: 2009-07									g	0,0
Siebrückstand > 10mm	FR/f	F5	DIN 19747: 2009-07										ja
Fremdstoffe (Anteil)	FR/f	F5	DIN 19747: 2009-07								0,1	%	< 0,1
Königswasseraufschluss	FR/f	F5	DIN EN 13657: 2003-01										Х
Physikalisch-chemische Ke	enngrö	ßen au	ıs der Originalsubs	tanz							•		
Trockenmasse	FR/f	F5	DIN EN 14346: 2007-03								0,1	Ma%	86,1
Anionen aus der Originalsı	ıbstanz	z				'	I.				-	1	
Cyanide, gesamt	FR/f	F5	DIN ISO 17380: 2013-10					3	3	10	0,5	mg/kg TS	< 0,5
Elemente aus dem Königsv	vasser	aufsch	luss nach DIN EN 1	3657: 200	03-01#								
Arsen (As)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	10	15	20	15 ²⁾	45	45	150	0,8	mg/kg TS	4,4
Blei (Pb)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	40	70	100	140	210	210	700	2	mg/kg TS	16
Cadmium (Cd)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,4	1	1,5	1 ³⁾	3	3	10	0,2	mg/kg TS	0,3
Chrom (Cr)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	30	60	100	120	180	180	600	1	mg/kg TS	13
Kupfer (Cu)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	20	40	60	80	120	120	400	1	mg/kg TS	11
Nickel (Ni)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	15	50	70	100	150	150	500	1	mg/kg TS	9
Quecksilber (Hg)	FR/f	F5	DIN EN ISO 12846 (E12): 2012-08	0,1	0,5	1	1	1,5	1,5	5	0,07	mg/kg TS	< 0,07
Thallium (TI)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	0,4	0,7	1	0,7 4)	2,1	2,1	7	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	60	150	200	300	450	450	1500	1	mg/kg TS	172

											Probenbeze	ichnung	KJ-08-11- 22-01
											Probenahme	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennumi	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
Organische Summenparame	eter au	ıs der	Originalsubstanz	ı				ı				ı	
тос	FR/f	F5	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,5 5)	0,5 5)	0,5 5)	0,5 ⁵⁾	1,5	1,5	5	0,1	Ma% TS	1,5
EOX	FR/f	F5	DIN 38414-17 (S17): 2017-01	1	1	1	1 ⁶⁾	3 ⁶⁾	3 ⁶⁾	10	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	FR/f	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	100	100	100	200	300	300	1000	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR/f	F5	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09				400	600	600	2000	40	mg/kg TS	< 40
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origin	alsubstan	z					•	•	•	
Benzol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Toluol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Ethylbenzol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
m-/-p-Xylol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
o-Xylol	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Summe BTEX	FR/f	F5	DIN EN ISO 22155: 2016-07	1	1	1	1	1	1	1		mg/kg TS	(n. b.) 1)

											Probenbeze	ichnung	KJ-08-11- 22-01
											Probenahme	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
LHKW aus der Originalsubs	tanz	ļ		I						I .	L		
Dichlormethan	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
trans-1,2-Dichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
cis-1,2-Dichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Chloroform (Trichlormethan)	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
1,1,1-Trichlorethan	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Tetrachlormethan	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Trichlorethen	FR/f	F5	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Tetrachlorethen	FR/f		DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
1,1-Dichlorethen	FR/f		DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
1,2-Dichlorethan	FR/f		DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Summe LHKW (10 Parameter)	FR/f	F5	DIN EN ISO 22155: 2016-07	1	1	1	1	1	1	1		mg/kg TS	(n. b.) 1)

											Probenbeze Probenahm	eichnung	KJ-08-11- 22-01 08.11.2022
						Vei	gleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
PAK aus der Originalsubsta	anz								l	l .	1		
Naphthalin	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,43
Acenaphthylen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,21
Acenaphthen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,39
Fluoren	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,90
Phenanthren	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	6,4
Anthracen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	1,1
Fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	5,0
Pyren	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	3,9
Benzo[a]anthracen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	2,7
Chrysen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	2,7
Benzo[b]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	2,9
Benzo[k]fluoranthen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	1,3
Benzo[a]pyren	FR/f	F5	DIN ISO 18287: 2006-05	0,3	0,3	0,3	0,6	0,9	0,9	3	0,05	mg/kg TS	2,4
Indeno[1,2,3-cd]pyren	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	1,6
Dibenzo[a,h]anthracen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	0,33
Benzo[ghi]perylen	FR/f	F5	DIN ISO 18287: 2006-05								0,05	mg/kg TS	1,2
Summe 16 EPA-PAK exkl. BG	FR/f	F5	DIN ISO 18287: 2006-05	3	3	3	3	3 ⁷⁾	3 7)	30		mg/kg TS	33,5

											Probenbeze	eichnung	KJ-08-11- 22-01
											Probenahm	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
PCB aus der Originalsubsta	nz			-	1					1	-		
PCB 28	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 52	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 101	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 153	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 138	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 180	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
Summe 6 DIN-PCB exkl. BG	FR/f	F5	DIN EN 15308: 2016-12	0,05	0,05	0,05	0,1	0,15	0,15	0,5		mg/kg TS	(n. b.) 1)
PCB 118	FR/f	F5	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
Summe PCB (7)	FR/f	F5	DIN EN 15308: 2016-12									mg/kg TS	(n. b.) 1)
Physchem. Kenngrößen au	ıs den	n 10:1-	Schütteleluat nach	DIN EN 1	2457-4: 20	03-01						•	
pH-Wert	FR/f	F5	DIN EN ISO 10523 (C5): 2012-04	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12			8,4
Temperatur pH-Wert	FR/f	F5	DIN 38404-4 (C4): 1976-12									°C	19,9
Leitfähigkeit bei 25°C	FR/f	F5	DIN EN 27888 (C8): 1993-11	250	250	250	250	250	1500	2000	5	μS/cm	212
Kenngr. d. Eluatherst. f. org	., nich	t-flüch	it. Par. nach DIN EN	l 12457-4:	2003-01								
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	FR/f	F5									10	FNU	11
Anionen aus dem 10:1-Schü	ittelelu	uat nac	h DIN EN 12457-4:	2003-01								•	
Chlorid (Cl)	FR/f	F5	DIN EN ISO 10304-1 (D20): 2009-07	30	30	30	30	30	50	100 8)	1,0	mg/l	5,5
Sulfat (SO4)	FR/f	F5	DIN EN ISO 10304-1 (D20): 2009-07	20	20	20	20	20	50	200	1,0	mg/l	29
Cyanide, gesamt	FR/f	F5	DIN EN ISO 14403-2: 2012-10	5	5	5	5	5	10	20	5	μg/l	< 5

											Probenbeze	ichnung	KJ-08-11- 22-01
											Probenahme	edatum/ -zeit	08.11.2022
						Ve	rgleichswe	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
Elemente aus dem 10:1-Scl	nüttele	luat na	ch DIN EN 12457-4	2003-01			11						
Arsen (As)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	14	14	14	14	14	20	60 ⁹⁾	1	μg/l	10
Blei (Pb)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	40	40	40	40	40	80	200	1	μg/l	2
Cadmium (Cd)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	1,5	1,5	1,5	1,5	1,5	3	6	0,3	μg/l	< 0,3
Chrom (Cr)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	12,5	12,5	12,5	12,5	12,5	25	60	1	μg/l	< 1
Kupfer (Cu)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	20	20	20	20	20	60	100	5	μg/l	6
Nickel (Ni)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	15	15	15	15	15	20	70	1	μg/l	2
Quecksilber (Hg)	FR/f	F5	DIN EN ISO 12846 (E12): 2012-08	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1	2	0,2	μg/l	< 0,2
Zink (Zn)	FR/f	F5	DIN EN ISO 17294-2 (E29): 2017-01	150	150	150	150	150	200	600	10	µg/l	< 10
Org. Summenparameter au	s dem	10:1-S	chütteleluat nach D	IN EN 12	157-4: 200	3-01	·	·	·		·	·	
Phenolindex, wasserdampfflüchtig	FR/f	F5	DIN EN ISO 14402 (H37): 1999-12	20	20	20	20	20	40	100	10	μg/l	< 10

											Probenbeze	ichnung	KJ-08-11- 22-01
											Probenahme	edatum/ -zeit	08.11.2022
						Vei	rgleichsw	erte			Probennum	mer	322186603
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
PAK aus dem 10:1-Schütte	leluat r	nach D	IN EN 12457-4: 20	03-01				1		1		1	
Naphthalin	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Acenaphthylen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Acenaphthen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Fluoren	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Phenanthren	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Anthracen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Fluoranthen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	0,40
Pyren	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	0,32
Benzo[a]anthracen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	0,06
Chrysen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	0,08
Benzo[b]fluoranthen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Benzo[k]fluoranthen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Benzo[a]pyren	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Indeno[1,2,3-cd]pyren	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Dibenzo[a,h]anthracen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Benzo[ghi]perylen	FR/f	F5	DIN 38407-39 (F39): 2011-09								0,05	μg/l	< 0,05
Summe 15 PAK ohne Naphthalin exkl. BG	FR/f	F5	DIN 38407-39 (F39): 2011-09									μg/l	0,86
Summe 16 EPA-PAK exkl. BG	FR/f	F5	DIN 38407-39 (F39): 2011-09									μg/l	0,86

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

X - durchgeführt

Heizblock-Aufschluss außer bei Untersuchungen im gesetzlich geregelten Bereich.

Kommentare zu Ergebnissen

1) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

Erläuterungen zu Vergleichswerten

Untersuchung nach LAGA TR Boden (2004) Tabelle II.1.2-2/-4 + -3/ -5.

Zuordnungswerte für Grenzwerte Z0*: Maximale Feststoffgehalte für die Verfüllung von Abgrabungen unter Einhaltung bestimmter Randbedingungen (siehe "Ausnahmen von der Regel" für die Verfüllung von Abgrabungen in Nr. II.1.2.3.2).

- ²⁾ Der Wert 15 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 20 mg/kg.
- ³⁾ Der Wert 1 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,5 mg/kg.
- 4) Der Wert 0,7 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,0 mg/kg.
- ⁵⁾ Bei einem C:N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%.
- ⁶⁾ Bei Überschreitung ist die Ursache zu prüfen.
- 7) Bodenmaterial mit Zuordnungswerten > 3 mg/kg und ≤ 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden.
- ⁸⁾ Bei natürlichen Böden in Ausnahmefällen bis 300 mg/l.
- ⁹⁾ Bei natürlichen Böden in Ausnahmefällen bis 120 μg/l.

Bei der Darstellung von Vergleichswerten im Prüfbericht handelt es sich um eine Serviceleistung der EUROFINS UMWELT. Die zitierten Vergleichswerte (Grenz-, Richt- oder sonstige Zuordnungswerte) sind teilweise vereinfacht dargestellt und berücksichtigen nicht alle Kommentare, Nebenbestimmungen und/oder Ausnahmeregelungen des entsprechenden Regelwerkes.