

Prüfberichtsnummer: AR-20-NK-004629-01

Seite 1 von 7

Eurofins Umwelt Nord GmbH - Demmlerstraße 9 - 19053 - Schwerin

IGU Ingenieurgesellschaft für Grundbau und Umwelttechnik mbH Nordring 12 19073 Wittenförden

Titel: Prüfbericht zu Auftrag 32021953

Prüfberichtsnummer: AR-20-NK-004629-01

Auftragsbezeichnung: Wittenförden, Triftweg, B-Plan Nr. 15

Anzahl Proben: 1

Probenart: Boden
Probenahmedatum: 24.03.2020
Probenehmer: Auftraggeber

Anlieferung normenkonform: Ja

Probeneingangsdatum: 23.06.2020

Prüfzeitraum: 23.06.2020 - 30.06.2020

Kommentar: Untersuchung gemäß Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)

vom 12.07.1999; Anlage 2, Nr. 4: Vorsorgewerte für Böden

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Dr. Konstanze Kiersch Digital signiert, 30.06.2020

Niederlassungsleitung Ilona Pinnow Tel. +49 385 5727550 Prüfleitung

Bankverbindung: UniCredit Bank AG

									Probenbez	eichnung	MP 1
									Probenahr	nedatum/ -zeit	24.03.2020
					Ve	rgleichsw	/erte		Probennur	nmer	320092112
Parameter	Lab.	Akkr.	Methode	Sand	Lehm/ Schluff	Ton	Humus- gehalt <= 8%	Humus- gehalt >	BG	Einheit	
Probenvorbereitung F	eststoffe	1									
Fraktion < 2 mm	FR/f	JE02	DIN ISO 11464: 2006-12						0,1	%	98,4 ± 8,9
Fraktion > 2 mm	FR/f	JE02	DIN ISO 11464: 2006-12						0,1	%	1,6 ± 0,14
Physikalisch-chemisc	he Kenngrö	ßen au	ıs der Originalsubst	anz					1		
Trockenmasse	FR/u	JE02	DIN EN 14346: 2007-03						0,1	Ma%	83,6 ± 7,5
Physikalisch-chemisc	he Kenngrö	ßen au	ıs der Originalsubst	anz (Fra	ktion < 2 m	ım)	•	•	•	1	1
pH in CaCl2	FR/f	JE02	DIN ISO 10390: 2005-12								8,1
Elemente aus Königsv	wasseraufsc	hluss	nach DIN ISO 11466	6: 1997-0	6 (Fraktion	- (2mm)	:	•	•	1	1
Blei (Pb)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	40	70	100			2	mg/kg TS	20 ± 4,0
Cadmium (Cd)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	0,4	1	1,5			0,2	mg/kg TS	0,3 ± 0,060
Chrom (Cr)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	30	60	100			1	mg/kg TS	13 ± 2,6
Kupfer (Cu)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	20	40	60			1	mg/kg TS	11 ± 2,2
Nickel (Ni)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	15	50	70			1	mg/kg TS	9 ± 1,8
Quecksilber (Hg)	FR/f	JE02	DIN EN ISO 12846 (E12): 2012-08	0,1	0,5	1			0,07	mg/kg TS	< 0,07
Zink (Zn)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	60	150	200			1	mg/kg TS	102 ± 18
Organische Summenp	arameter a	ıs der	Originalsubstanz (F	raktion <	< 2 mm)				-	'	1
TOC	FR/f	JE02	DIN ISO 10694: 1996-08						0,1	Ma% TS	1,7 ± 0,51
Humus	FR/f	JE02	berechnet/DIN ISO 10694: 1996-08						0,2	Ma% TS	3,0 ± 0,90

									Probenbeze	ichnung	MP 1
									Probenahme	edatum/ -zeit	24.03.2020
					Vei	rgleichsw	erte		Probennum	mer	320092112
Parameter	Lab.	Akkr.	Methode	Sand	Lehm/ Schluff	Ton	Humus- gehalt <= 8%	Humus- gehalt > 8%	BG	Einheit	
PAK aus der Originalsubsta	anz (Fr	aktion	< 2 mm)				•		•	•	
Naphthalin	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	< 0,05
Acenaphthylen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	< 0,05
Acenaphthen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	0,09 ± 0,032
Fluoren	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	0,12 ± 0,042
Phenanthren	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	1,6 ± 0,56
Anthracen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	0,29 ± 0,10
Fluoranthen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	2,5 ± 0,88
Pyren	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	2,1 ± 0,74
Benzo[a]anthracen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	0,99 ± 0,35
Chrysen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	0,98 ± 0,34
Benzo[b]fluoranthen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	1,4 ± 0,49
Benzo[k]fluoranthen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	0,49 ± 0,17
Benzo[a]pyren	FR/f	JE02	DIN ISO 18287: 2006-05				0,3	1	0,05	mg/kg TS	0,85 ± 0,30
Indeno[1,2,3-cd]pyren	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	0,42 ± 0,15
Dibenzo[a,h]anthracen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	0,18 ± 0,063
Benzo[ghi]perylen	FR/f	JE02	DIN ISO 18287: 2006-05						0,05	mg/kg TS	0,40 ± 0,14
Summe 16 EPA-PAK exkl.BG	FR/f	JE02	DIN ISO 18287: 2006-05				3	10		mg/kg TS	12,4 ± 3,7

									Probenbezei Probenahme		MP 1 24.03.2020
					Vei	rgleichsw	erte		Probennumr		320092112
Parameter	Lab.	Akkr.	Methode	Sand	Lehm/ Schluff	Ton	Humus- gehalt <= 8%	Humus- gehalt > 8%	BG	Einheit	
PCB aus der Originalsubsta	nz (Fr	aktion	< 2 mm)				1				
PCB 28	FR/f	JE02	DIN 38414-S20: 1996-01/DIN ISO 10382: 2003-05						0,01	mg/kg TS	< 0,01
PCB 52	FR/f	JE02	DIN 38414-S20: 1996-01/DIN ISO 10382: 2003-05						0,01	mg/kg TS	< 0,01
PCB 101	FR/f	JE02	DIN 38414-S20: 1996-01/DIN ISO 10382: 2003-05						0,01	mg/kg TS	< 0,01
PCB 153	FR/f	JE02	DIN 38414-S20: 1996-01/DIN ISO 10382: 2003-05						0,01	mg/kg TS	< 0,01
PCB 138	FR/f	JE02	DIN 38414-S20: 1996-01/DIN ISO 10382: 2003-05						0,01	mg/kg TS	< 0,01
PCB 180	FR/f	JE02	DIN 38414-S20: 1996-01/DIN ISO 10382: 2003-05						0,01	mg/kg TS	< 0,01
Summe 6 DIN-PCB exkl. BG	FR/f	JE02	DIN 38414-S20: 1996-01/DIN ISO 10382: 2003-05				0,05	0,1		mg/kg TS	(n. b.) 1)

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Die Abschätzung der Messunsicherheit erfolgt auf Basis der DIN ISO 11352. Statistische Randbedingungen: k=2; P=95%

* Aufschluss mittels temperaturregulierendem Graphitblock

Kommentare zu Ergebnissen

¹⁾ nicht berechenbar, da alle Werte < BG.

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit JE02 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2005 D-PL-14081-01-00 akkreditiert.

/u - Die Analyse des Parameters erfolgte in Untervergabe.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

Erläuterungen zu Vergleichswerten

Untersuchung nach BBodSchV Tab. 4.1 & 4.2 - Vorsorgewerte Metalle (+As) & Organik.

Böden mit naturbedingt und großflächig siedlungsbedingt erhöhten Hintergrundgehalten: unbedenklich, soweit eine Freisetzung der Schadstoffe oder zusätzliche Einträge nach § 9 Abs. 2 und 3 dieser Verordnung keine nachteiligen Auswirkungen auf die Bodenfunktionen erwarten lassen

Die Vorsorgewerte werden nach den Hauptbodenarten gemäß Bodenkundlicher Kartieranleitung, 4. Auflage, berichtigter Nachdruck 1996, unterschieden; sie berücksichtigen den vorsorgenden Schutz der Bodenfunktionen bei empfindlichen Nutzungen. Für die landwirtschaftliche Bodennutzung gilt § 17 Abs. 1 des Bundes-Bodenschutzgesetzes.

Stark schluffige Sande sind entsprechend der Bodenart Lehm/Schluff zu bewerten.

Bei den Vorsorgewerten der Tabelle 4.1 ist der Säuregrad der Böden wie folgt zu berücksichtigen:

- Bei Böden der Bodenart Ton mit einem pH-Wert von < 6,0 gelten für Cadmium, Nickel und Zink die Vorsorgewerte der Bodenart Lehm/Schluff.
- Bei Böden der Bodenart Lehm/Schluff mit einem pH-Wert von < 6,0 gelten für Cadmium, Nickel und Zink die Vorsorgewerte der Bodenart Sand. § 4 Abs. 8 Satz 2 der Klärschlammverordnung vom 15. April 1992 (BGBI. I S. 912), zuletzt geändert durch Verordnung vom 6. März 1997 (BGBI. I S. 446), bleibt unberührt.
- Bei Böden mit einem pH-Wert von < 5,0 sind die Vorsorgewerte für Blei entsprechend den ersten beiden Anstrichen herabzusetzen.

Die Vorsorgewerte der Tabelle 4.1 finden für Böden und Bodenhorizonte mit einem Humusgehalt von mehr als 8 Prozent keine Anwendung. Für diese Böden können die zuständigen Behörden ggf. gebietsbezogene Festsetzungen treffen.

Bei der Darstellung von Grenz- bzw. Richtwerten im Prüfbericht handelt es sich ausschließlich um eine Serviceleistung der EUROFINS UMWELT. Eine rechtsverbindliche Zuordnung der Prüfberichtsergebnisse im Sinne der zitierten Regularien wird ausdrücklich ausgeschlossen. Diese liegt alleinig im Verantwortungsbereich des Auftraggebers. Die zitierten Grenz- und Richtwerte sind teilweise vereinfacht dargestellt und berücksichtigen nicht alle Kommentare, Nebenbestimmungen und/oder Ausnahmeregelungen des entsprechenden Regelwerkes.

Grenzwertabgleich

Der Grenzwertabgleich bezieht sich ausschließlich auf die in AR-20-NK-004629-01 aufgeführten Ergebnisse. Die zitierten Grenz- und Richtwerte sind teilweise vereinfacht dargestellt und berücksichtigen nicht alle Kommentare, Nebenbestimmungen und/oder Ausnahmeregelungen des entsprechenden Regelwerkes.

Der Grenzwertabgleich erfolgt auf Basis eines rein numerischen Vergleichs des erhaltenen Messwertes mit den entsprechenden Grenz- und Richtwerten. Die erweiterte Messunsicherheit des entsprechenden Verfahrens wird hierbei nicht berücksichtigt. Der durchgeführte Grenzwertabgleich ist ausdrücklich nicht mit einer Konformitätsbewertung gleichzusetzen.

Nachfolgend aufgeführte Proben weisen im Vergleich zur BBodSchV Tab. 4.1 & 4.2 - Vorsorgewerte Metalle (+As) & Organik die dargestellten Überschreitungen auf. Eine Rechtsverbindlichkeit des Grenzwertabgleiches wird ausdrücklich ausgeschlossen.

X: Überschreitung festgestellt

Probenbeschrei- M

MP 1

bung:

Probennummer: 320092112

Test	Parameter	Sand	Lehm/ Schluff	Ton	0	Humusge- halt > 8%
Zink [Königswasser-Aufschluss, < 2mm gesiebt, BBodschV] mg/kg TS	Zink (Zn)	Х				
PAK (EPA, 16 Parameter) [< 2mm gesiebt, BBodschV] mg/kg TS	Benzo[a]pyren				Х	
PAK (EPA, 16 Parameter) [< 2mm gesiebt, BBodschV] mg/kg TS	Summe 16 EPA-PAK exkl.BG				Х	Х

INGENIEURGESELLSCHAFT FÜR GRUNDBAU UND UMWELTTECHNIK MBH

(0385) 64 55 -10 Nordring 12 19073 Wittenförden Fax: (0385) 64 55 - 110

Wittenförden, 30.06.2020

BERICHT **AUFTRAGSNUMMER:** 20 101 - 1

PROJEKT / VORHABEN: Wittenförden, Triftweg, B-Plan Nr.15

Gemeinde Wittenförden **AUFTRAGGEBER:**

über Hartung & Partner GmbH Lessingstraße 33

19059 Schwerin

AUFTRAGSSACHE: Probenahme und Analytik gemäß Parameter

> - Bundesbodenschutzverordnung (BBodSchV), Vorsorgewerte Metalle + Organik (Anlage 2, Nr.4)

24.03. - 30.06.2020 **U**NTERSUCHUNGSZEITRAUM:

Dieser Bericht umfasst 1 Seite(n) und 7 Anlageseite(n)

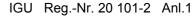
Aufgabenstellung / Vorgaben / Anforderungen

- Ergänzung zum Geotechnischen Bericht, Reg.-Nr. 20 101 /U1/

- Beprobung und Untersuchung von Boden (Oberboden)

- Feststellung möglicher Kontaminationen / Klärung Wiederverwendung / Verwertung / Entsorgung

- Bewertung der Ergebnisse gemäß BBodSchV


In der nachfolgenden Übersicht sind Angaben zur Probenahme, zum Material, zum Untersuchungsumfang und zu den Ergebnissen der Analytik enthalten.

In der Anlage 1 sind die Untersuchungsberichte der Eurofins Umwelt Nord GmbH beigefügt.

Projekt /	Wittenförden, Triftweg, B-Plan Nr. 15	Datum	24.03.2020
Probenbezeichnung	MP"1"		
Probenahmestelle	siehe Lageplan Anl. 2.1 aus /U1/	Entnahmetiefe	0,0 - 0,85m
Probenmaterial	Oberboden	Menge	ca. 1,2kg
Farbe / Geruch	dunkelgraubraun / schwarz	Probenbehälter	6 Plastikbecher, je 1l
Entnahmegerät	Rammkernsonde / Spaten	Probenkonservierung	ohne
Analytik gemäß	BBodSchV 1999, Anlage 2, Nr.4 Vorsorg	jewerte	
Ergebnis	Grenzwertüberschreitung PAK, BaP	Prüfbericht - Anlage	AR-NK-004629-01
Anmerkungen	Probenentnahme im Rahmen der boden	mechanischen Unter	suchung / Bewertung
Auswertung	Die untersuchte Probe MP"1", gebildet al BS 1 - BS 6, überschreitet für die Parame Benzo[a]pyren [0,85 ± 0,30 > 0,30 mg/kg gemäß o.g. Analytik. Der Wiedereinbau vor Ort oder auch an Die Prüfwerte für Park- und Freizeitanlag ebenfalls überschritten. Die untersuchten Parameter entsprecher Boden 2004	eter PAK [12, 4 ± 3 ,7 g TS] die Vorsorgewe anderer Stelle ist nich gen im Wirkpfad Bode	> 3 mg/kg TS] und erte der BBodSchV nt möglich. en - Mensch werden

Anlage 1 Untersuchungsbericht Eurofins Umwelt Nord GmbH, AR-20-NK-004629-01

Dipl.- Ing. T. Beirow

Prüfberichtsnummer: AR-20-NK-004698-01

Eurofins Umwelt Nord GmbH - Demmlerstraße 9 - 19053 - Schwerin

IGU Ingenieurgesellschaft für Grundbau und Umwelttechnik mbH Nordring 12 19073 Wittenförden

Titel: Prüfbericht zu Auftrag 32021955

Prüfberichtsnummer: AR-20-NK-004698-01

Auftragsbezeichnung: Wittenförden, Triftweg, B-Plan Nr. 15

Anzahl Proben: 1

Probenart: Boden
Probenahmedatum: 24.03.2020
Probenehmer: Auftraggeber

Anlieferung normenkonform: Ja

Probeneingangsdatum: 23.06.2020

Prüfzeitraum: 23.06.2020 - 02.07.2020

Kommentar: Untersuchung gemäß TR LAGA für Boden (Tab. II.1.2.-2/4 + -3/5) 2004

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Dr. Konstanze Kiersch Digital signiert, 02.07.2020

Niederlassungsleitung Ilona Pinnow Tel. +49 385 5727550 Prüfleitung

											Probenbezei	chnung	MP 3
											Probenahme	datum/ -zeit	24.03.2020
						Ve	rgleichswe	rte			Probennumr	ner	320092120
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
Probenvorbereitung Fest	stoffe								<u> </u>	l	-		
Probenmenge inkl. Verpackung	FR/f	JE02	DIN 19747: 2009-07									kg	1,7
Fremdstoffe (Art)	FR/f	JE02	DIN 19747: 2009-07										nein
Fremdstoffe (Menge)	FR/f	JE02	DIN 19747: 2009-07									g	0,0
Siebrückstand > 10mm	FR/f	JE02	DIN 19747: 2009-07										Ja
Physikalisch-chemische l	Kenngrö	ßen au	ıs der Originalsubs	tanz					•			•	
Trockenmasse	FR/u	JE02	DIN EN 14346: 2007-03								0,1	Ma%	86,5
Anionen aus der Originals	substanz	2	1						Į.	Į.	•		
Cyanide, gesamt	FR/f	JE02	DIN ISO 17380: 2006-05					3	3	10	0,5	mg/kg TS	< 0,5
Elemente aus dem König	swassera	aufsch	luss nach DIN EN 1	3657: 200	3-01#						•		
Arsen (As)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	10	15	20	15 ²⁾	45	45	150	0,8	mg/kg TS	4,2
Blei (Pb)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	40	70	100	140	210	210	700	2	mg/kg TS	8
Cadmium (Cd)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	0,4	1	1,5	1 ³⁾	3	3	10	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	30	60	100	120	180	180	600	1	mg/kg TS	15
Kupfer (Cu)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	20	40	60	80	120	120	400	1	mg/kg TS	10
Nickel (Ni)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	15	50	70	100	150	150	500	1	mg/kg TS	12
Quecksilber (Hg)	FR/f	JE02	DIN EN ISO 12846 (E12): 2012-08	0,1	0,5	1	1	1,5	1,5	5	0,07	mg/kg TS	< 0,07
Thallium (TI)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	0,4	0,7	1	0,74)	2,1	2,1	7	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	60	150	200	300	450	450	1500	1	mg/kg TS	39

											Probenbeze	ichnung	MP 3
											Probenahme	edatum/ -zeit	24.03.2020
						Ve	rgleichswe	erte			Probennumi	mer	320092120
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
Organische Summenparame	eter au	ıs der	Originalsubstanz										
TOC	FR/f	JE02	DIN EN 13137 (S30): 2001-12	0,5 ⁵⁾	0,5 ⁵⁾	0,5 ⁵⁾	0,5 ⁵⁾	1,5	1,5	5	0,1	Ma% TS	0,2
EOX	FR/f	JE02	DIN 38414-17 (S17): 2017-01	1	1	1	1 ⁶⁾	3 ⁶⁾	3 ⁶⁾	10	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	FR/f	JE02	DIN EN 14039: 2005-01/LAGA KW/04: 2009-12	100	100	100	200	300	300	1000	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR/f	JE02	DIN EN 14039: 2005-01/LAGA KW/04: 2009-12				400	600	600	2000	40	mg/kg TS	< 40
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origin	alsubstan	z						•		
Benzol	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Toluol	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Ethylbenzol	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
m-/-p-Xylol	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
o-Xylol	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Summe BTEX	FR/f	JE02	DIN EN ISO 22155: 2016-07	1	1	1	1	1	1	1		mg/kg TS	(n. b.) 1)

											Probenbeze	ichnung	MP 3
											Probenahm	edatum/ -zeit	24.03.2020
						Ve	rgleichsw	erte			Probennum	mer	320092120
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
LHKW aus der Originalsubs	tanz	1	1										
Dichlormethan	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
trans-1,2-Dichlorethen	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
cis-1,2-Dichlorethen	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Chloroform (Trichlormethan)	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
1,1,1-Trichlorethan	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Tetrachlormethan	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Trichlorethen	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Tetrachlorethen	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
1,1-Dichlorethen	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
1,2-Dichlorethan	FR/f	JE02	DIN EN ISO 22155: 2016-07								0,05	mg/kg TS	< 0,05
Summe LHKW (10 Parameter)	FR/f	JE02	DIN EN ISO 22155: 2016-07	1	1	1	1	1	1	1		mg/kg TS	(n. b.) 1)

											Probenbeze Probenahme	ichnung edatum/ -zeit	MP 3 24.03.2020
						Ve	rgleichswe	erte			Probennum	mer	320092120
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
PAK aus der Originalsubsta	nz												
Naphthalin	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Acenaphthylen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Acenaphthen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Fluoren	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Phenanthren	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Anthracen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Fluoranthen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Pyren	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Benzo[a]anthracen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Chrysen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Benzo[b]fluoranthen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Benzo[k]fluoranthen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Benzo[a]pyren	FR/f	JE02	DIN ISO 18287: 2006-05	0,3	0,3	0,3	0,6	0,9	0,9	3	0,05	mg/kg TS	< 0,05
Indeno[1,2,3-cd]pyren	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Dibenzo[a,h]anthracen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Benzo[ghi]perylen	FR/f	JE02	DIN ISO 18287: 2006-05								0,05	mg/kg TS	< 0,05
Summe 16 EPA-PAK exkl.BG	FR/f	JE02	DIN ISO 18287: 2006-05	3	3	3	3	3 ⁷⁾	3 ⁷⁾	30		mg/kg TS	(n. b.) 1)

											Probenbezeichnung Probenahmedatum/ -zeit	MP 3	
											Probenahmedatum/ -z		24.03.2020
						Ve	rgleichswe	erte			Probennum	mer	320092120
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
PCB aus der Originalsubsta	nz	1								1			
PCB 28	FR/f	JE02	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 52	FR/f	JE02	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 101	FR/f	JE02	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 153	FR/f	JE02	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 138	FR/f	JE02	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
PCB 180	FR/f	JE02	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
Summe 6 DIN-PCB exkl. BG	FR/f	JE02	DIN EN 15308: 2016-12	0,05	0,05	0,05	0,1	0,15	0,15	0,5		mg/kg TS	(n. b.) 1)
PCB 118	FR/f	JE02	DIN EN 15308: 2016-12								0,01	mg/kg TS	< 0,01
Summe PCB (7)	FR/f	JE02	DIN EN 15308: 2016-12									mg/kg TS	(n. b.) 1)
Physchem. Kenngrößen au	ıs den	10:1	Schütteleluat nach	DIN EN 1	2457-4: 20	03-01							
pH-Wert	FR/f	JE02	DIN 38404-C5: 2009-07	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12			8,3
Temperatur pH-Wert	FR/f	JE02	DIN 38404-4 (C4): 1976-12									°C	21,4
Leitfähigkeit bei 25°C	FR/f	JE02	DIN EN 27888 (C8): 1993-11	250	250	250	250	250	1500	2000	5	μS/cm	156
Anionen aus dem 10:1-Schü	ittelelu	ıat na	ch DIN EN 12457-4:	2003-01									
Chlorid (CI)	FR/f	JE02	DIN EN ISO 10304-1 (D20): 2009-07	30	30	30	30	30	50	1008)	1,0	mg/l	1,6
Sulfat (SO4)	FR/f	JE02	DIN EN ISO 10304-1 (D20): 2009-07	20	20	20	20	20	50	200	1,0	mg/l	12
Cyanide, gesamt	FR/f	JE02	DIN EN ISO 14403: 2002-07	5	5	5	5	5	10	20	5	μg/l	< 5

											Probenbeze	ichnung	MP 3
											Probenahm	edatum/ -zeit	24.03.2020
						Ve	rgleichswe	erte			Probennum	mer	320092120
Parameter	Lab.	Akkr.	Methode	Z0 Sand	Z0 Lehm/ Schluff	Z0 Ton	Z0*	Z1.1	Z1.2	Z2	BG	Einheit	
Elemente aus dem 10:1-S	chüttele	luat na	ach DIN EN 12457-4	2003-01									
Arsen (As)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	14	14	14	14	14	20	60 ⁹⁾	1	μg/l	1
Blei (Pb)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	40	40	40	40	40	80	200	1	μg/l	< 1
Cadmium (Cd)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	1,5	1,5	1,5	1,5	1,5	3	6	0,3	μg/l	< 0,3
Chrom (Cr)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	12,5	12,5	12,5	12,5	12,5	25	60	1	μg/l	< 1
Kupfer (Cu)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	20	20	20	20	20	60	100	5	μg/l	< 5
Nickel (Ni)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	15	15	15	15	15	20	70	1	μg/l	< 1
Quecksilber (Hg)	FR/f	JE02	DIN EN ISO 12846 (E12): 2012-08	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	1	2	0,2	μg/l	< 0,2
Zink (Zn)	FR/f	JE02	DIN EN ISO 17294-2: 2005-02	150	150	150	150	150	200	600	10	μg/l	< 10
Org. Summenparameter a	aus dem	10:1-8	chütteleluat nach D	IN EN 12	457-4: 200	3-01		•		•	•	•	
Phenolindex, wasserdampfflüchtig	FR/f	JE02	DIN EN ISO 14402 (H37): 1999-12	20	20	20	20	20	40	100	10	μg/l	< 10

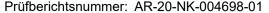
Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen


Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit JE02 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2005 D-PL-14081-01-00 akkreditiert.

/u - Die Analyse des Parameters erfolgte in Untervergabe.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

^{*} Aufschluss mittels temperaturregulierendem Graphitblock

¹⁾ nicht berechenbar, da alle Werte < BG.

Seite 8 von 8

Erläuterungen zu Vergleichswerten

Untersuchung nach LAGA TR Boden (2004) Tabelle II.1.2-2/-4 + -3/ -5.

Zuordnungswerte für Grenzwerte Z0*: Maximale Feststoffgehalte für die Verfüllung von Abgrabungen unter Einhaltung bestimmter Randbedingungen (siehe "Ausnahmen von der Regel" für die Verfüllung von Abgrabungen in Nr. II.1.2.3.2).

- 2) Der Wert 15 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 20 mg/kg.
- ³⁾ Der Wert 1 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,5 mg/kg.
- 4) Der Wert 0,7 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,0 mg/kg.
- 5) Bei einem C:N-Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-%.
- ⁶⁾ Bei Überschreitung ist die Ursache zu prüfen.
- 7) Bodenmaterial mit Zuordnungswerten > 3 mg/kg und ≤ 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden.
- 8) Bei natürlichen Böden in Ausnahmefällen bis 300 mg/l.
- 9) Bei natürlichen Böden in Ausnahmefällen bis 120 µg/l.

Bei der Darstellung von Grenz- bzw. Richtwerten im Prüfbericht handelt es sich ausschließlich um eine Serviceleistung der EUROFINS UMWELT. Eine rechtsverbindliche Zuordnung der Prüfberichtsergebnisse im Sinne der zitierten Regularien wird ausdrücklich ausgeschlossen. Diese liegt alleinig im Verantwortungsbereich des Auftraggebers. Die zitierten Grenz- und Richtwerte sind teilweise vereinfacht dargestellt und berücksichtigen nicht alle Kommentare. Nebenbestimmungen und/oder Ausnahmeregelungen des entsprechenden Regelwerkes.

Grenzwertabgleich

Der Grenzwertabgleich bezieht sich ausschließlich auf die in AR-20-NK-004698-01 aufgeführten Ergebnisse. Die zitierten Grenz- und Richtwerte sind teilweise vereinfacht dargestellt und berücksichtigen nicht alle Kommentare, Nebenbestimmungen und/oder Ausnahmeregelungen des entsprechenden Regelwerkes.

Der Grenzwertabgleich erfolgt auf Basis eines rein numerischen Vergleichs des erhaltenen Messwertes mit den entsprechenden Grenz- und Richtwerten. Die erweiterte Messunsicherheit des entsprechenden Verfahrens wird hierbei nicht berücksichtigt. Der durchgeführte Grenzwertabgleich ist ausdrücklich nicht mit einer Konformitätsbewertung gleichzusetzen.

Keine der in AR-20-NK-004698-01 enthaltenen Proben weist eine Überschreitung des niedrigsten Zuordnungswertes, bzw. eine Verletzung eines Grenz- oder Richtwertes der Liste LAGA TR Boden (2004) Tabelle II.1.2-2/-4 + -3/ -5 auf.

INGENIEURGESELLSCHAFT FÜR GRUNDBAU UND UMWELTTECHNIK MBH

Wittenförden, 02.07.2020

BERICHT AUFTRAGSNUMMER: 20 101 - 2

PROJEKT / VORHABEN: Wittenförden, Triftweg, B-Plan Nr.15

AUFTRAGGEBER: Gemeinde Wittenförden über Hartung & Partner GmbH

Lessingstraße 33 19059 Schwerin

AUFTRAGSSACHE: Probenahme und Analytik gemäß Parameter

- TR LAGA Boden (Tab. II. 1.2.-2/4 + -3/5) 2004

UNTERSUCHUNGSZEITRAUM: 24.03. - 02.07.2020

Dieser Bericht umfasst 1 Seite(n) und 8 Anlageseite(n)

Aufgabenstellung / Vorgaben / Anforderungen

- Ergänzung zum Geotechnischen Bericht, Reg.-Nr. 20 101 /U1/

- Beprobung und Untersuchung von Boden (mineralischer Boden unterhalb Oberboden)

- Feststellung möglicher Kontaminationen / Klärung Wiederverwendung / Verwertung / Entsorgung

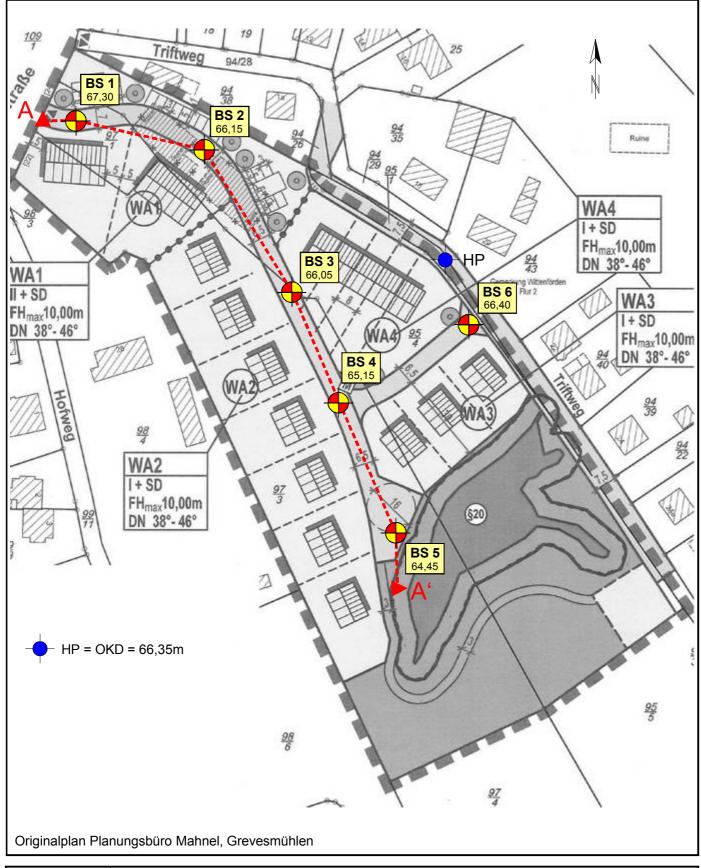
- Bewertung der Ergebnisse gemäß TR LAGA Boden 2004

In der nachfolgenden Übersicht sind Angaben zur Probenahme, zum Material, zum Untersuchungsumfang und zu den Ergebnissen der Analytik enthalten.

In der Anlage 1 sind die Untersuchungsberichte der Eurofins Umwelt Nord GmbH beigefügt.

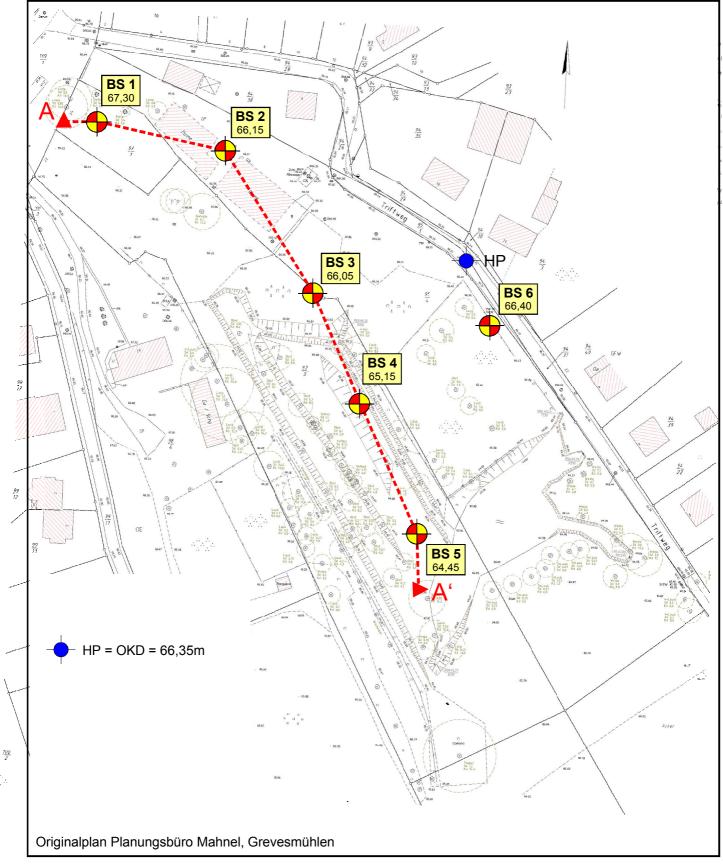
Projekt /	Wittenförden, Triftweg, B-Plan Nr. 15	Datum	24.03.2020						
Probenbezeichnung	MP"2"								
			:						
Probenahmestelle	siehe Lageplan Anl. 2.1 aus /U1/	Entnahmetiefe	0,25m - 2,30m						
Probenmaterial	Geschiebelehm (S,u*,t')	Menge	ca. 1,65kg						
Farbe / Geruch	braun, graubraun	Probenbehälter	10 Plastikbecher, je 1l						
Entnahmegerät	Rammkernsonde	Probenkonservierung	ohne						
Analytik gemäß	TR LAGA Boden (Tab. II. 1.22/4 + -3/5)	2004							
Ergebnis	Z 0	Prüfbericht - Anlage	AR-NK-004698-01						
Anmerkungen	Probenentnahme im Rahmen der boden	mechanischen Unter	suchung / Bewertung						
Auswertung	Die untersuchte Probe MP"2", gebildet aus den Einzelproben der Sondierungen BS 1 - BS 6, hält den Zuordnungswert Z 0 ein. Bei Einhaltung der Zuordnungswerte Z 0 ist aus umweltrechtlicher Sicht i.a. ein uneingeschränkter Einbau des Bodens möglich [Einbauklasse 0].								

Anlage 1 Untersuchungsbericht Eurofins Umwelt Nord GmbH, AR-20-NK-004698-01


Dipl.- Ing. T. Beirow

Vorhaben :	Witten	Wittenförden, Triftweg, B-Plan Nr. 15 - Erschließung						
Planbezeichnung :		Übersichtslageplan						
Maßstab:	1 : 10 000	Bearbeiter :	Beirow 06/2020	Anlagen - Nr. :	1			
Höhensystem :	-	gezeichnet :	Beirow 06/2020	Auftrag - Nr. :	20 101			

19073 Wittenförden Nordring 12 - Tel.: (0385)6455-10 Fax: (0385)6455-110



Vorhaben :	Witten	Wittenförden, Triftweg, B-Plan Nr. 15 - Erschließung						
Planbezeichnung :		Lageplan der Aufschlüsse						
Maßstab:	1 : 1250	Bearbeiter :	Beirow 06/2020	Anlagen - Nr. :	2.1			
Höhensystem :	HN 76	gezeichnet :	Beirow 06/2020	Auftrag - Nr. :	20 101			

Ingenieurgesellschaft für Grundbau und Umweltt echnik mbH

19073 Wittenförden Nordring 12 - Tel.: (0385)6455-10 Fax: (0385)6455-110

Vorhaben :	Witten	Wittenförden, Triftweg, B-Plan Nr. 15 - Erschließung					
Planbezeichnung :		Bestandsplan	mit Lage der Aufsch	lüsse			
Maßstab:	1 : 1250	Bearbeiter :	Beirow 06/2020	Anlagen - Nr. :	2.1a		
Höhensystem :	HN 76	gezeichnet :	Beirow 06/2020	Auftrag - Nr. :	20 101		

Ingenieurgesellschaft für Grundbau und Umwelttechnik mbH

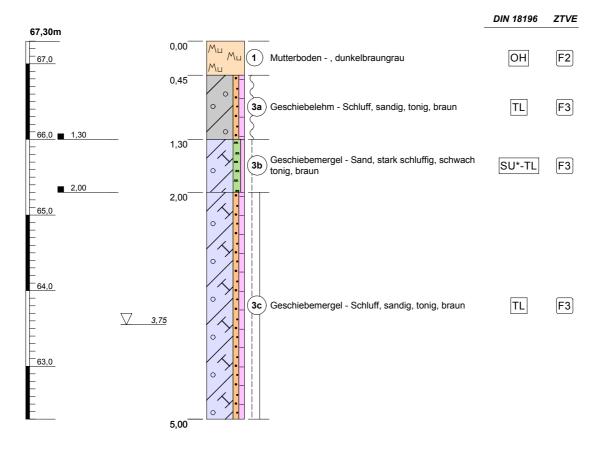
19073 Wittenförden Nordring 12 - Tel.: (0385)6455-10 Fax: (0385)6455-110

Sondierung: BS 1

Lokalität: siehe Lageplan

Projektnr.: 20 101 Anlage Nr.: 3.1

Bohrdatum: Höhenmaßstab: Höhenbezug:

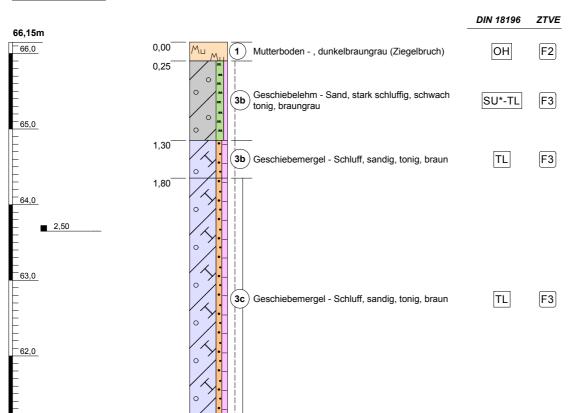

1:50

HN 76

Bemerkungen:

24.03.2020

Sondierung: BS 2

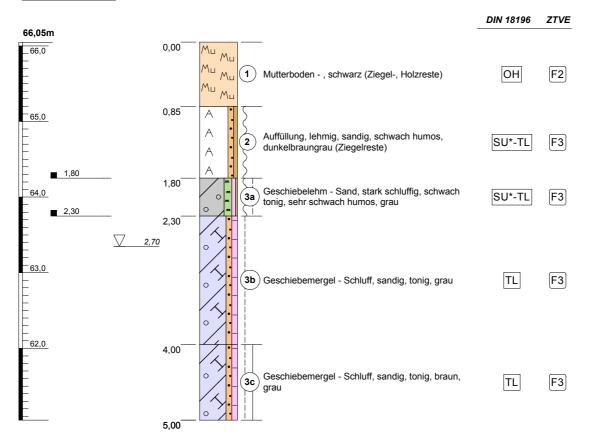

5,00

Lokalität: siehe Lageplan

Projektnr.: 20 101 Anlage Nr.: 3.2 Höhenbezug:

Bohrdatum: Höhenmaßstab: 24.03.2020

1:50 HN 76

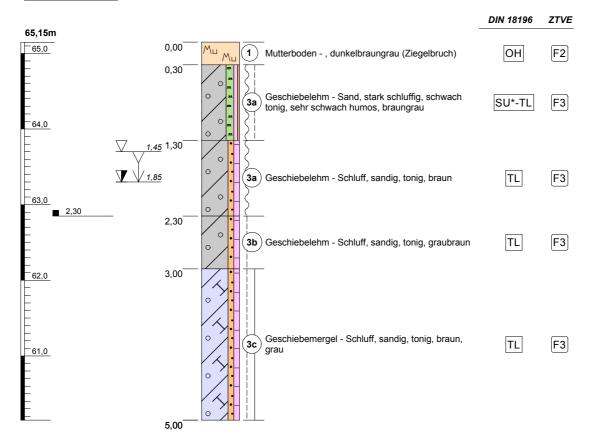


Sondierung: BS 3

Lokalität: siehe Lageplan

 Bohrdatum:
 Höhenmaßstab:
 Höhenbezug:

 24.03.2020
 1:50
 HN 76

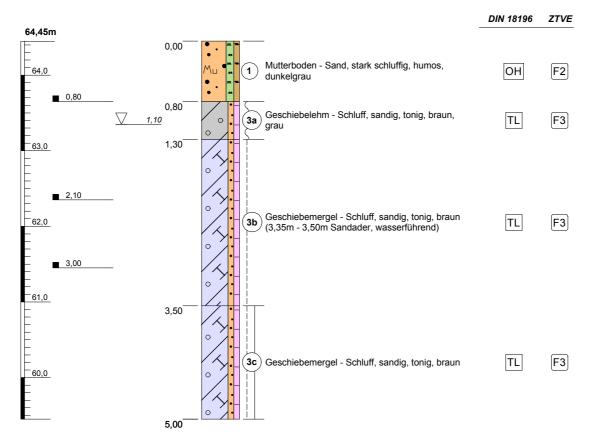

Sondierung: BS 4

Lokalität: siehe Lageplan

Projektnr.: 20 101 Anlage Nr.: 3.4

20 1:50 HN 76

Höhenbezug:

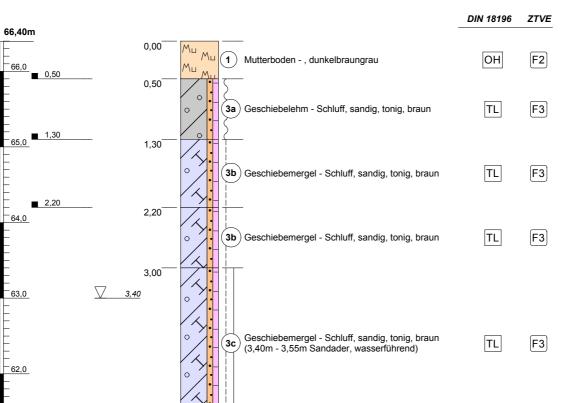


Sondierung: BS 5

Lokalität: siehe Lageplan

 Bohrdatum:
 Höhenmaßstab:
 Höhenbezug:

 24.03.2020
 1:50
 HN 76


Sondierung: BS 6

5,00

Lokalität: siehe Lageplan

 Bohrdatum:
 Höhenmaßstab:
 Höhenbezug:

 24.03.2020
 1:50
 HN 76

IGU mbH

Nordring 12 19073 Wittenförden

Tel 0385 - 64 55 10 Fax 0385 - 64 55 10

Registrier Nr.: 20 101

Anlage: 4.1

Wassergehalt nach DIN 18 121

Wittenförden, Triftweg B-Plan 15 - Wohnanlage

Bearbeiter: Beirow Datum: 27.03.2020

Proben entnommen am: 01.04.2020

Art der Entnahme: gestört

Laborant: Nowak

Probe:	BS 1	BS 1	BS 2	BS 3	BS 3
Tiefe [m]:	0,45- 1,30	1,30- 2,00	2,50	0,85- 1,80	1,80- 2,30
Bodennummer:	3	3	3	2	3
Bodengruppe DIN 18196:	TL	TL	TL	SU*-TL	TL
Feuchte Probe + Behälter [g]:	530.52	616.05	584.75	595.84	612.84
Trockene Probe + Behälter [g]:	507.68	583.09	560.00	555.30	576.14
Behälter [g]:	354.00	357.51	357.44	359.80	357.93
Porenwasser [g]:	22.84	32.96	24.75	40.54	36.70
Trockene Probe [g]:	153.68	225.58	202.56	195.50	218.21
Wassergehalt [%]	14.86	14.61	12.22	20.74	16.82

Probe:	BS 4	BS 5	BS 5	BS 6	BS 6
Tiefe [m]:	1,30- 2,30	0,80- 2,10	2,10- 3,00	0,50- 1,30	1,30- 2,20
Bodennummer:	3	3	3	3	3
Bodengruppe DIN 18196:	TL	TL	TL	TL	TL
Feuchte Probe + Behälter [g]:	624.51	651.02	641.00	664.96	631.28
Trockene Probe + Behälter [g]:	586.96	605.92	607.22	622.78	599.57
Behälter [g]:	356.78	360.47	354.48	356.42	359.34
Porenwasser [g]:	37.55	45.10	33.78	42.18	31.71
Trockene Probe [g]:	230.18	245.45	252.74	266.36	240.23
Wassergehalt [%]	16.31	18.37	13.37	15.84	13.20

IGU mbH Nordring 12 19073 Wittenförden Tel. 0385 - 64 55 10

Fax 0385 - 64 55 110

Registrier Nr.: 20 101

Anlage: 4.2

Glühverlust nach DIN 18 128

Wittenförden, Triftweg

B-Plan 15 - Wohnanlage

Bearbeiter: Beirow Datum: 27.03.2020

Art der Entnahme: gestört

Probe entnommen am: 01.04.2020

Aufschluß:		BS 5	
Tiefe in [m]:		0,00-0,80	
Bodengruppe DIN 18 196:		ОН	
Bodennummer:	1	1	1
Ungeglühte Probe + Behälter [g]:	44.04	39.00	39.80
Geglühte Probe + Behälter [g]:	43.21	37.50	38.23
Behälter [g]:	18.76	17.27	18.42
Massenverlust [g]:	0.83	1.50	1.57
Trockenmasse vor Glühen [g]:	25.28	21.73	21.38
Glühverlust [%]	3.28	6.90	7.34
Mittelwert [%]		5.84	

Aufschluß:		BS 6	
Tiefe in [m]:		0,00-0,50	
Bodengruppe DIN 18 196:		ОН	
Bodennummer:	1	1	1
Ungeglühte Probe + Behälter [g]:	40.51	36.11	39.46
Geglühte Probe + Behälter [g]:	39.53	35.36	38.58
Behälter [g]:	17.58	18.12	17.50
Massenverlust [g]:	0.98	0.75	0.88
Trockenmasse vor Glühen [g]:	22.93	17.99	21.96
Glühverlust [%]	4.27	4.17	4.01
Mittelwert [%]		4.15	

EU

INGENIEURGESELLSCHAFT FÜR GRUNDBAU UND UMWELTTECHNIK MBH

Nordring 12 **19073 Wittenförden ☎** (0385) 64 55 - 10 Fax: (0385) 64 55 - 110

GEOTECHNISCHER BERICHT

Bauvorhaben: Wittenförden

Triftweg, B-Plan Nr. 15

Bauherr: Gemeinde Wittenförden

Registriernummer: 20 101

Auftraggeber: Gemeinde Wittenförden

über Hartung & Partner GmbH

Lessingstraße 31 19059 Schwerin

Aufgestellt durch : Dipl.- Ing. T. Beirow

Textseiten: 15

Anlageseiten: 12

Dipl.-Ing. T. Beirow

Geschäftsführer

Wittenförden, den 30.06.2020

INHALTSVERZEICHNIS

1		Veranlassung / Bauvorhaben / Aufgabenstellung	
	1.1		
	1.2		
	1.3		
	1.4		
_		3. 3. 3. 3. 3.	
2		Untersuchungsprogramm	4
	2.1		
	2.2	G	
	2.3	Vermessung	5
3		Baugrund- und Grundwasserverhältnisse	5
	3.1		
	3.2		
	3.3		
,			
4	4.1	Ergebnisse der geotechnischen Untersuchungen	
	4.2		
	4.3		
	4.4	Bautechnische Verwendung der vorhandenen Böden und Baustoffe	10
5		Zusammenfassung der Baugrund- und Grundwasserverhältnisse	10
6		Kanalbau - Gründungsvorschläge / Empfehlungen	
J	6.1		
	6.2		
	6.3		
	0.5	3	
7		Empfehlungen zum Straßenausbau	
	7.1	and the second s	12
	7.2		13
	7.3	Entwässerung	14
8		Versickerung von Niederschlagswasser	14
9		Hochbauten	15
10)	Baubegleitende Überwachung	15
11		Ergänzende Hinweise	
	•		

ANLAGENVERZEICHNIS

Α	1	Übersichtslageplan, Maßstab 1 : 10 000	1	Blatt
Α	2.1	Lageplan der Aufschlüsse, Maßstab 1 : 1250	1	Blatt
Α	2.1a	Bestandsplan mit Lage der Aufschlüsse, Maßstab 1 : 1250	1	Blatt
Α	2.2	Baugrundschnitt	1	Blatt
Α	3.1 - 3.6	Bohrprofile	6	Blatt
Α	4.1	Laborprotokoll Bestimmung des Wassergehaltes	1	Blatt
Α	4.2	Laborprotokoll Bestimmung des Glühverlustes	1	Blatt

1 <u>Veranlassung / Bauvorhaben / Aufgabenstellung</u>

Straßenbau sowie zur Versickerungsfähigkeit beauftragt.

1.1 **Allgemeines**

Die Gemeinde Wittenförden plant am Triftweg den B-Plan Nr. 15 zu erschließen sowie eine Bebauung mit ein- bis zweigeschossigen Wohngebäuden zu realisieren. Die IGU mbH wurde mit der Erstellung eines Geotechnischen Berichtes zum Kanal- und

1.2 Unterlagen

U 1	bestätigtes Kostenangebot vom 21.02.2020	26.02.2020
U 2	B-Plan Nr. 15, Städtebauliches Konzept, M 1 : 1000,	07.02.2020
	Planungsbüro Mahnel, Grevesmühlen	
U 3	Lage- und Höhenplan, M 1 : 50, Vermessungsbüro Gudat, Schwerin	07.12.2011
U 4	mdl. Angaben zum Bauvorhaben, Hartung & Partner GmbH, Schwerin	02/03.2020
U 5	Ergebnisse von 6 Rammkernsondierungen, IGU mbH, Wittenförden	24.03.2020

1.3 Angaben zum Bauvorhaben

Gemäß /U2, U4/ ist folgendes vorgesehen:

- Straßen- / Kanalbau
 - o Ausbaulänge ca. 500m
 - Neubau SW- / RW Kanalisation, Verlegetiefen < 3m
 - Erschließungsstraßen, Pflasterbauweise, Belastungsklasse Bk0,3

Das geplante Bauvorhaben wird in die geotechnische Kategorie - GK 1- eingestuft.

1.4 Aufgabenstellung

- Angaben zur Baugrundschichtung
- Angaben zu Grundwasserständen bzw. Grundwasserschwankungen
- Angaben zur Wasserdurchlässigkeit der Bodenschichten
- Angaben zur Bebaubarkeit und Belastbarkeit des Untergrundes
- Angaben zur bautechnischen Wiederverwendung der vorhandenen Böden und Baustoffe
- Gründungsvorschläge Kanal- und Straßenbau
- Angaben zur Bautechnologie
- Bewertung der Versickerungsmöglichkeiten für Regenwasser

2 <u>Untersuchungsprogramm</u>

2.1 Bodenaufschlüsse / Feldversuche / Probenahme

Entsprechend /U1/ kamen 6 Aufschlüsse mit Tiefen von 5,0m unter GOK für die geplanten Erschließungsmaßnahmen zur Ausführung.

Die Lage der Aufschlusspunkte ist im Lageplan der Aufschlüsse, Anlage 2.1 eingetragen. In Anlage 2.1a sind die Aufschlüsse vergleichend im Bestandsplan eingetragen, um die Topographie zu verdeutlichen.

In Anlage 2.2 sind die Sondierungen zu einem Baugrundschnitt zusammengefasst.

Die Bohrprofile sind als Anlage 3.ff beigefügt.

Je Ifdm bzw. bei Schichtwechsel wurden gestörte Bodenproben entnommen.

2.2 Bodenmechanische Laboruntersuchungen

Im Labor wurden die entnommenen Bodenproben miteinander verglichen und ähnliche Bodenproben unter einer willkürlich gewählten Nummer zusammengefasst.

An repräsentativen Bodenproben wurden bodenmechanische Laborversuche ausgeführt.

Tabelle 1 **Bodenmechanische Laborversuche**

Laborversuch	Norm	Anzahl	Anlage
Bestimmung des Wassergehaltes	DIN 18 121	10 x	4.1
Bestimmung des Glühverlustes	DIN 18 128	2 x	4.2

2.3 Vermessung

Die Ansatzpunkte der Aufschlüsse wurden höhenmäßig auf einen vorhandenen Schachtdeckel aus /U3/ eingemessen.

Tabelle 2 Ansatzhöhe und Aufschlusstiefen der Sondierungen (Fahrbahn)

Aufschluss	BS 1	BS 2	BS 3	BS 4	BS 5	BS 6
Höhe [m HN 76]	67,30	66,15	66,05	65,15	64,45	66,40
Endtiefe in m	5,0	5,0	5,0	5,0	5,0	5,0

3 Baugrund- und Grundwasserverhältnisse

3.1 Morphologie, Bebauung, Nutzung

Das Gelände ist relativ eben, mit schwachem Gefälle in südwestlicher Richtung.

Die Höhendifferenz zwischen den Bohrpunkten beträgt etwa 3m.

Im Südostteil des Untersuchungsgebietes ist ein offener Wassergraben mit ca. 160m Länge vorhanden, der in einen Teich mündet.

Es ist die Verfüllung des Grabens geplant.

Das Untersuchungsgebiet ist gegenwärtig unbebaut. Im Nordwestteil des Untersuchungsgebietes befanden sich zwei Gebäude, die abgerissen wurden. Eine Vielzahl an jüngeren Bäumen wurden bauvorbereitend gefällt.

3.2 Baugrundschichtung

Der Untergrund im Untersuchungsgebiet ist relativ gleichmäßig aufgebaut.

Oberflächig steht schwach humoser Oberboden (Schicht ①) mit Mächtigkeiten von 0,25m bis 0,85m an. Bei BS 3 enthält die Schicht Ziegel- und Holzreste (Auffüllung).

Nur bei BS 3 wurden lehmige, schwach humose Auffüllungen (Schicht ②) angetroffen, deren Schichtunterkante bei 1,80m liegt. Die Schicht enthält auch Ziegelreste. Die Schichtdicke wurde mit 0,95m - 0,25m ermittelt.

Im Vergleich zu den anderen Aufschlüssen handelt es sich um eine Baugrundschwächezone.

Im Liegenden stehen flächendeckend bindige Böden als Geschiebelehm / -mergel (Schicht ③) an. Es kommen dünne wasserführende Sandadern vor.

Der Geschiebelehm / -mergel weist wechselnde Konsistenzen zwischen weich 3a, steif 3b und steif - halbfest 3c auf.

3.3 Grundwasserverhältnisse

Grundwasser (Schichtwasser) wurde in fast allen Sondierungen in Tiefen zwischen 1,10m bis 3,75m unter Flur angetroffen. Dies entspricht relativ einheitlich 63,00m - 63,55m HN.

Auf den relativ undurchlässigen bindigen Böden ② + ③ ist die temporäre Bildung von Stau-/ Schichtwasser möglich.

Zum Zeitpunkt der Erkundung wurden der Wasserstand wie folgt gelotet :

Tabelle 3 Wasserstände

Aufschluss	BS 1	BS 2	BS 3	BS 4	BS 5	В 6
Wsp. [m]	3,75		2,70	1,85	1,10	3,40
Wsp. [m HN 76]	63,55		63,35	63,30	63,35	63,00

In Abhängigkeit vom Niederschlagsdargebot und überjährigen Schwankungen können auch höhere Wasserstände vorkommen.

4 Ergebnisse der geotechnischen Untersuchungen

4.1 Bautechnische Beschreibung der Baugrundschichten

Die angetroffenen Böden werden aufgrund ihrer Eigenschaften in Schichten unterteilt, die in Plänen und Profilen mit einer Zahl, z.B. Schicht ${\mathbin{\textcircled{1}}}$, gekennzeichnet werden. Für das Vorhaben werden 3 Schichten ausgehalten.

Schicht ®	Oberboden Sand, schluffig, schwach humos	ОН
Mächtigkeit	0,25m - 0,85m	
Genese	humose Deckschicht, z.T. Wurzel- / Pflanzenreste	
Vorkommen	oberflächig, alle Aufschlüsse	
Kornverteilung	Schluffkorngehalt <0,063mm ca. 30 - 40 M. %	
Lagerungsdichte	locker	
Steine	Steine < 200mm 0 - 5%	
Steine / Blöcke	Steine / Blöcke > 200mm 0 - 1%, große Blöcke > 600mm 0%	
organ. Anteil	vgl = 4,1 - 5,8 M%	siehe A 4.2
Frostsicherheit	F 3	
Wasserführung	nein, durchlässig - schwach durchlässig, Staunässe möglich	
Färbung	dunkelgraubraun, schwarz	
Besonderheiten	enthält Ziegel- und Holzreste	

Schicht @	Auffüllung, lehmig	[SU* - TL]
Mächtigkeit	0,95m	
Genese	strukturgestört	
Vorkommen	nur BS 3	
Kornverteilung	Schluffkorngehalt <0,063mm ca. 30 - 60 M.%	
Konsistenz	weich , leicht plastisch	
	$w_n = 20,74\%$; Ic $\approx 0,70$	siehe A 4.2
Steine	Steine < 200mm 0 - 30%	
Steine / Blöcke	Steine / Blöcke > 200mm 0 - 5%, große Blöcke > 600mm 0 - 2%	
Frostsicherheit	F 3	
Wasserführung	nein, sehr schwach durchlässig	
Färbung	dunkelbraungrau	
Besonderheiten	enthält Ziegelreste ;	
	sehr witterungsempfindlich, schnelle Aufweichung	

Schicht @	Schicht 3 Geschiebelehm / -mergel: Sand - Schluff - Gemisch, schwach tonig - tonig	
Mächtigkeit	3,20m - 4,75m (nicht durchteuft)	
Genese	glazigen	
Vorkommen	alle Aufschlüsse	
Kornverteilung	Schluffkorngehalt <0,063mm ca. 30 - 60 M.%	
Konsistenz	wechselnd zwischen weich ③a bis steif - halbfest ③c	
	w _n = 12,2 - 16,8% ; Ic = 0,65 - 1,00 ; leicht plastisch	siehe A 4.2
Steine	Steine < 200mm 0 - 30%	
Steine / Blöcke	Steine / Blöcke > 200mm 0 - 5%, große Blöcke > 600mm 0 - 2%	
Frostsicherheit	F 3	
Wasserführung	nein, sehr schwach durchlässig	
Färbung	braun, grau	
Besonderheiten	kann Geschiebe / Steine enthalten	
	z.T. sehr witterungsempfindlich, schnelle Aufweichung (SU*)	

In der folgenden Tabelle sind die oben angeführten Baugrundschichten zusammengefasst.

Tabelle 4 Bodengruppen, Bodenklassen, Verdichtungsklassen, Frostsicherheit

Nr.	Beschreibung der Schicht	Boden- gruppe DIN 18196	Bodenklasse DIN 18300	Frostempfind- lichkeit ZTVE	Verdichtungs- klasse ZTVA
①	Oberboden	ОН	1/3	F 3	
2	Auffüllung, lehmig	[SU* - TL]	4	F 3	V 3
3	Geschiebelehm / -mergel	SU* - TL	4	F 3	V 3

4.2 <u>Durchlässigkeit</u>

Die Durchlässigkeitsbeiwerte lasen sich anhand der Kornverteilungskurven korrelativ bzw. anhand von Literaturdaten wie folgt angegeben:

Tabelle 5 Durchlässigkeitsbeiwerte

Schicht Nr.	Bodengruppe DIN 18196	Durchlässigkeitsbeiwert k (m/s)
①	ОН	1 x 10 ⁻⁷ - 1 x 10 ⁻⁶
2	[SU* - TL]	1 x 10 ⁻⁹ - 1 x 10 ⁻⁸
3	SU* - TL	1 x 10 ⁻⁹ - 1 x 10 ⁻⁸

Es ist zu beachten, dass diese Werte für die gesättigte Bodenzone gelten. Für überschlägige Berechnungen ist in der ungesättigten Bodenzone nur 20% des k-Wertes ansetzbar.

4.3 Einteilung in Homogenbereiche

Aufgrund des Aufschlußverfahrens (Rammkernsondierungen) ist eine Quantifizierung des Steinanteiles nicht möglich, so dass dieser nur grob geschätzt werden kann. Bezüglich der Erdarbeiten nach DIN 18300 - 2015 erfolgt folgende Einteilung:

Tabelle 6 Homogenbereiche

Schicht	Boden- gruppe DIN 18196	Erdbau DIN 18300 - 2012	Homogenbereich Erdbau DIN 18300 - 2015 GK 1
1	ОН	1	Erd-A
2	[SU* - TL]	4	Erd-B
3	SU* - TL	4	Erd-B

Erd-A = Oberboden, Erd-B = Lockergesteine (BK 3 - 5)

Die den Homogenbereichen zuzuordnenden Kennwerte sind nachfolgend zusammengestellt.

• Erdbau (DIN 18300, Lösen / Laden) und Verbau (DIN 18 303)

Kennwerte der Homogenbereiche (GK I) Tabelle 7

Kennwerte	Homogenbereich Erd-A	Homogenbereich Erd-B	
Cabiaht Na	(i)	② + ③	
Schicht-Nr.	<u> </u>	E + 5	
ortsübliche Bezeichnung	Oberboden	Lehm, Mergel	
Bodengruppe DIN 18196	ОН	SU* - TL	
Anteil Steine, D< 200mm	<5%	<30%	
Anteil Blöcke, D> 200mm / D> 630mm	<1%	<5%	
Dichte	1,7 - 1,85 t/m³	2,0 - 2,2 t/m³	
undränierte Scherfestigkeit	35 - 50 kN/m²	35 - 175 kN/m²	
Konsistenz	weich	weich - halbfest	
Plastizität	leicht plastisch	leicht plastisch	
Durchlässigkeit	1 x 10 ⁻⁹ - 1 x 10 ⁻⁸ m/s	1 x 10 ⁻⁹ - 1 x 10 ⁻⁸ m/s	
Lagerungsdichte	n.e.	n.e.	
Organischer Anteil	4 - 5%	<3%	

n.e. = nicht ermittelbar

4.4 Bautechnische Verwendung der vorhandenen Böden und Baustoffe

Die bautechnischen Wiederverwendungsmöglichkeiten der angetroffenen Baugrundschichten in Abhängigkeit des Einsatzgebietes sind in der nachfolgenden Übersicht dargestellt.

Tabelle 8 Verwendung der anstehenden Böden

Nr.	DIN 18196	Erdbau Auffüllungen		Senbau Tragschicht	Kanalb Gründungssohle	
①	ОН	○ - ■	0	0	0	0
2	[SU* - TL]	0 - 🗆	0- 🗆	0	□-0	0 - 🗆
3	SU* - TL	0 - 🗆	0-0	0	□ - ■	0 - 🗆

geeignet / ausreichend tragfähig

Zusammenfassung der Baugrund- und Grundwasserverhältnisse

Die Untergrundverhältnisse wurden durch 6 Rammkernsondierungen mit Tiefen von 5,0m unter GOK erkundet.

Oberflächig stehen verbreitet humose Oberböden ①, partiell auch lehmige Auffüllungen ② an. Im Liegenden kommt Geschiebelehm / -mergel 3 vor.

Grundwasser wurde zum Erkundungszeitpunkt in Tiefen von 1,10m - 3,75m angetroffen. Schichten- / Stauwasser kann temporär auch darüber auftreten.

Kanalbau - Gründungsvorschläge / Empfehlungen

6.1 Schächte / Leitungsgraben

Bei der Verlegung der Entwässerungskanäle sind die DIN EN 1610 sowie die DIN 4124 zu

Die im Bereich der Gründungssohle der Schächte und Kanäle anstehende Schicht 3 ist prinzipiell ausreichend tragfähig.

Die Aushubarbeiten sind möglichst mit einer Räumschaufel ohne Zähne vorzunehmen (glatt abziehen), um Auflockerungen zu vermeiden.

Stark aufgeweichte Böden sind zusätzlich zu entfernen und gegen Kiespolster zu ersetzen.

Im Sohlbereich werden durchgängig witterungsempfindliche und frostveränderliche Böden erwartet. Diese sind durch eine sofortige Überdeckung vor Frost und Niederschlag zu schützen.

[□] bedingt geeignet

nicht geeignet / nicht tragfähig

Die Schichten ②, ③ erfordern im Fall des Wiedereinbaus einen erhöhten Verdichtungsaufwand bei annähernd optimalem Wassergehalt. Bei Durchnässung sind sie nicht einbaufähig. Es wird ein Ersatz gegen verdichtungsfähige Füllsande (SE, U > 3) empfohlen.

Einbaulagen sind in einer maximalen Stärke von 30cm auszuführen.

Es sind Schlagzahlen von $N_{10} > 25$ ($D_{Pr} \ge 98\%$) zu erfüllen. Der erforderliche Verdichtungsgrad ist durch Rammsondierungen (DPL) nachzuweisen.

6.2 Verbau

Für die Verlege- und Gründungsarbeiten (bis 1,75 m Tiefe und ohne seitliche Auflast) wird kein Verbau erforderlich, wenn die Kanten ab 1,25 m bis max. 1,75 m Höhe unter 45° abgeböscht werden. Bei notwendigen Aushubtiefen > 1,75 m, sind die Gräben / Baugruben zu verbauen.

Als Verbau können maschinelle Grabenverbausysteme (z. B. Verbauboxen - Krings Verbau) eingesetzt werden. Für alle verwendeten Verbauarten sind, soweit nicht Muster-/Typenstatiken vorliegen, statische Nachweise hinsichtlich ihrer Eignung zu führen.

Der statische Nachweis des Verbaues ist nicht Gegenstand dieses Geotechnischen Berichtes.

Für das Einbringen des Verbaus sind die Angaben der DIN 4150 maßgebend.

Bei Herstellung des Verbaus ist darauf zu achten, dass keinerlei Hohlräume zwischen Grabenwand und Verbau auftreten. Diese sind sofort zu verfüllen. Der Verbau ist so herzustellen, dass kein Materialaustrag bzw. Materialtransport aus dem Bereich hinter dem Verbau in die Baugrube erfolgen kann (Verbau bis auf Graben- / Baugrubensohle führen). Es ist zu beachten, dass der Verbau mit dem Aushub fortschreitend eingebracht wird, da Baugrubenwände im anstehenden Boden nicht standsicher sind (insbesondere bei seitlichen Auflasten).

Beim Ziehen des Verbaus ist auf eine fachgerechte Verfüllung und Verdichtung der Verbaubereiche zu achten.

6.3 Wasserhaltung

Bei Schachtungen bis 3,0m Tiefe ist mit Stau- / Schichtwasserzulauf zu rechnen. Es ist eine offene Wasserhaltung (Bauhilfsdränage, Pumpensümpfe) vorzuhalten.

7 Empfehlungen zum Straßenausbau

7.1 Notwendige Dicke des Straßenoberbaus

Die Dicke des Straßenoberbaus ist u.a. so zu bemessen, dass

A) EINE AUSREICHENDE FROSTSICHERHEIT

und

B) EIN AUSREICHENDES TRAGVERHALTEN GEWÄHRLEISTET IST.

Maßgeblich hierbei ist die sich ergebende größere Dicke.

ZU A) FROSTSICHERHEIT

Es stehen im künftigen Planumsbereich Böden mit starker Frostempfindlichkeit an. Die Dicke des frostsicheren Straßenaufbaus ist deshalb für F3 - Böden zu ermitteln.

Tabelle 9 Mindestdicke des frostsicheren Straßenaufbaus (RStO 12)

Frostempfindlich-	Dicke in cm bei Belastungsklasse			
keitsklasse	Bk100 bis Bk10	Bk3,2 bis Bk1,0	Bk0,3	0,3
F 2	55	50	40	
F 3	65	60	50	50

	Mehr- oder Minderdicken infolge örtlicher Verhältnisse		
Frosteinwirkung	Zone I	± 0cm	
	Zone II	+ 5cm	+ 5
	Zone III	+ 15cm	
kleinräumige	ungünstige Klimaeinflüsse, z.B. Nordhang, Kammlagen von Gebirgen	+ 5cm	
Klimaunter-	keine besonderen Klimaeinflüsse	± 0cm	± 0
schiede	günstige Klimaeinflüsse bei geschlossener seitlicher Bebauung	- 5cm	
Wasserverhältnisse	kein Grund- oder Schichtenwasser bis in eine Tiefe von 1,50m unter Planum	± 0cm	
im Untergrund	Grund- oder Schichtenwasser dauernd oder zeitweise höher als 1,50m unter Planum	+ 5cm	+ 5
	Einschnitt, Anschnitt	+ 5cm	
Lage der Gradiente	Geländehöhe bis Damm ≤ 2,0m	± 0cm	± 0
	Damm > 2m	- 5cm	
Entwässerung der Fahrbahn /	Entwässerung der Fahrbahn über Mulde, Gräben bzw. Böschungen	± 0cm	
Ausführung der Randbereiche	Entwässerung der Fahrbahn und Randbereiche über Rinnen bzw. Abläufe und Rohrleitungen	- 5cm	- 5
notwendi	ge Dicke des frostsicheren Oberbaues		60

Die notwendige Dicke des frostsicheren Oberbaus, resultierend auf Grundlage der maßgeblichen F3 Böden, beträgt beispielhaft für die Belastungsklassen Bk0,3 = 60cm.

ZU B) GEWÄHRLEISTUNG EINES AUSREICHENDEN TRAGVERHALTENS

Im <u>ungestörten</u> Zustand sind etwa nachstehende Tragfähigkeiten zu erwarten: Die Schicht ① kommt im Straßenplanum nicht vor.

Schicht 2 + 3 steif $E_{v2} \approx 15 - 25 \text{ MPa}$ Schicht 2 + 3 weich $E_{v2} \approx 5 - 15 \text{ MPa}$

Im künftigen Planum ist fast durchgängig sehr witterungsempfindlicher Geschiebelehm 3 zu erwarten. Durch Erdarbeiten und Befahrung treten Störungen des Untergrundes ein, so dass sich die Tragfähigkeit verringern kann.

Da im Straßenbereich Kanalbauarbeiten ausgeführt werden, ergeben sich deutliche Tragfähigkeitsunterschiede zwischen Kanaltrasse (Bodenaustausch) und den anstehenden Böden. Um die Tragfähigkeitsunterschiede auszugleichen, wird im natürlich anstehenden Planum ebenfalls ein Bodenaustausch erforderlich. Die notwendige Dicke beträgt ca. 10 - 25cm (ca. 10cm Frostschutzschicht 0/32, ca. 20 - 25cm bei Sand 0/4). Der Bodenaustausch ist vorzugsweise in die Frostschutzschicht zu integrieren und deshalb als GW - GI auszuführen. Beispielhaft wird der Aufbau für Belastungsklasse Bk0,3 abgeleitet.

notwendige Gesamtdicke des Straßenaufbaus

	Bk 0,3	
aus a)	60 cm	aus Gründen der Frostsicherheit
aus b)	10 cm	Zuschlag zur Gewährleistung der Tragfähigkeit (Bodenaustausch)
gesamt	70 cm	

7.2 <u>Ausbauvorschlag</u>

Zur Gewährleistung eines frostsicheren Oberbaus mit ausreichender Tragfähigkeit wird empfohlen, die Dicke der ungebundenen Schichten mit > 55cm in Anlehnung an die RStO zu realisieren. Damit ergeben sich folgende Ausbauvorschläge:

Pflasterbauweise

Bk 0.3 -- Tafel 3. Zeile 3 / 1

8	cm	Pflasterdecke	
4	cm	Pflasterbett	
25	cm	Schottertragschicht 0/45, ZTV SoB-StB 04	E _{v2} ≥ 120 MPa
33	cm	Frostschutzschicht 0/32, GW - GI (Bodenaustausch)*	E _{v2} ≈ 45 MPa
		Planum + Vlies, GRK 3	
70	cm	Gesamtaufbau	

^{*} Zuschlag zur Gewährleistung der Tragfähigkeit

Der Bodenaushub muss rückschreitend, sowie der Einbau der Frostschutzschicht vor Kopf erfolgen (Planum nicht direkt befahren!!).

Der Bodenaustausch und die Frostschutzschicht sind in einer Lage einzubauen.

Bei einem Einbau von RC-Baustoffen ist deren Eignung vor dem Einbau gemäß TL Gestein-StB und ZTV SoB-StB nachzuweisen.

Bauvorbereitend / -begleitend ist für ausreichende Entwässerung des Planums zu sorgen. Wasserzutritt zum Planum ist zu verhindern. Das Planum ist sofort mit dem Bodenaustausch zu bedecken.

Das Planum ist nur glatt abzuziehen, dynamische Anregungen sind zu vermeiden. Aufgeweichte bindige Böden sind gegen frostsicheres Material auszutauschen.

7.3 Verfüllung Wassergraben

Der vorhandene Wassergraben soll überbaut werden, so dass eine Verfüllung vorgenommen werden muss.

Die Grabenböschungen sind zu beräumen (Rodung Stubben, Abtrag Oberboden ①). Als Verfüllmaterial kommen frostsichere Sande SE - SW in Frage. Es ist ein Verdichtungsgrad $D_{Pr} \ge 98\%$ zu erfüllen, bis 0,5m unter Straßenplanum $D_{Pr} \ge 100\%$.

Versickerndes Niederschlagswasser wird weiter dem Geländetiefpunkt zulaufen. Die Grabenverfüllung wirkt als Dränage.

7.4 Entwässerung

Bereits während der Bauzeit ist auf eine funktionierende Planumsentwässerung zu achten (ausreichendes Quer- / Längsgefälle) bzw. es sind Anschlüsse an den RW - Kanal herzustellen.

8 Versickerung von Niederschlagswasser

Die Planung von Sickeranlagen für nicht schädlich verunreinigtes Niederschlagswasser erfolgt auf Grundlage der DWA-A 138.

Der zur Verrieselung vorgesehene Standort muss zwei wesentliche Kriterien erfüllen :

- $k_f > 1 \times 10^{-6} \text{ m/s}$ • Mindestdurchlässigkeit des Baugrundes unterhalb der Sickeranlage
- Mindestabstand der Grabensohle zum mittleren höchsten Grundwasserstand > 1,0 m

Die Anforderungen an die Durchlässigkeit des Untergrundes sind im vorliegenden Fall nicht gegeben.

Der Standort ist zur Versickerung von Niederschlagswasser nicht geeignet, so dass ein Anschluss an eine Vorflut erfolgen muß.

9 Hochbauten

Die Ausführung von Flachgründungen als Bodenplatte mit Frostschürzen oder auf Streifenfundamente ist möglich und kann zur Ausführung gelangen.

10 Baubegleitende Überwachung

Für alle vom Auftragnehmer gelieferten Baustoffe sind Eignungsnachweise vor dem Einbau vorzulegen. Die Erd - und Straßenbauarbeiten sind durch Eigenüberwachungs- und Kontrollprüfungen zu begleiten.

11 Ergänzende Hinweise

Die im vorliegenden Bericht enthaltenen Ergebnisse der geotechnischen Untersuchungen, der bautechnischen Aussagen sowie der Gründungsvorschläge beziehen sich ausschließlich auf den Kenntnisstand des Gutachters zum Zeitpunkt der Beauftragung bzw. der Gutachtenerstellung (siehe Unterlagenverzeichnis und Angaben zum Bauvorhaben Kap. 1.2 -1.3). Ergeben sich im Zuge weiterer Planungen Änderungen hinsichtlich der Bauweise oder der Gründungsebene, sind die Angaben des vorliegenden Berichtes diesbezüglich zu überprüfen und ggf. zu ergänzen bzw. konkretisieren.

Werden Abweichungen hinsichtlich der angetroffenen Baugrundverhältnisse zum vorliegenden Bericht festgestellt, ist der Baugrundgutachter zu verständigen.

T. Beiroul

aufgestellt: Dipl.-Ing. T. Beirow